5.2. Восстановление изображения в преобразованных координатахПосле оценивания параметров геометрического преобразования встает задача собственно геометрической коррекции или, по другому, восстановления изображения в преобразованных координатах. Будем считать, что заданы два снимка ( Рис.5.7. Вычисленные координаты освещенности. Вследствие этого изображения на снимках отличаются друг от друга геометрическими искажениями. Будем также считать, что на изображениях выделены сопряженные точки, по которым произведено оценивание параметров геометрического преобразования. Зная коэффициенты линейного (или полиномиального) преобразования, можно вычислить в плоскости корректируемого изображения Восстановив уровни яркости наблюдаемых элементов в вычисленных точках на корректируемом снимке, то есть осуществив «передискретизацию», полученные значения также можно поместить на дискретном растре размером
где Интерполяционное ядро имеет значительное влияние на численное поведение интерполированных функций. Теоретически оптимальную интерполяцию обеспечивает известная sinc-функция, в одномерном случае имеющая вид
где Поскольку интерполяция противоположна дискретизации, то интерполирующая функция (5.20) по существу является идеальным низкочастотным фильтром, вырезающим основной участок ограниченного спектра из множества его повторяющихся копий. Однако этот теоретический метод практически невозможно реализовать в контексте обработки изображений. В частности, ограничение области суммирования в (5.19) приводит к тому, что осцилляции, известные как феномен Гиббса, будут проникать в восстанавливаемый образ С вычислительной точки зрения предпочтителен алгоритм, известный как интерполятор по ближайшему соседу, где значение в точке Рис.5.8. Интерполятор по ближайшему соседу с прямоугольным ядром. Справа график модуля Фурье-образа ядра. Пунктирной линией показан идеальный низкочастотный фильтр с частотой среза
Рис.5.9. Линейная интерполяционная функция и модуль ее Фурье-образа (на правом рисунке пунктиром отмечен идеальный низкочастотный фильтр) Здесь интерполированный сигнал представляется в виде
где Приближение к низкочастотному фильтру здесь еще далеко от идеального, и к тому же производная интерполированного сигнала терпит разрывы в узлах интерполяции (тем не менее формула (5.21) часто применяется на практике, поскольку удовлетворяет одновременно требованиям приемлемой точности и приемлемым затратам вычислительных ресурсов). Наиболее подходящим для интерполяции изображений является кубический B-сплайн (рис.5.10), поскольку в результате его применения получается функция, непрерывная и гладкая в узлах интерполяции. Ядро кубической свертки составляется из кусков кубических полиномов, определенных на подинтервалах (-2,-1), (-1,0), (0,1), (1,2) по каждой из координат. Вне интервала (-2,2) интерполяционное ядро равно нулю. Двумерный кубический B-сплайн может быть записан как произведение двух одномерных интерполяционных функций по каждой из координат
где
и Как показали непосредственные исследования, кубический B-сплайн имеет тенденцию к сглаживанию передискретизованного изображения по сравнению с его первоначальной копией. Поэтому были предприняты определенные усилия для выбора кубического сплайна, более подходящего задачам обработки изображений. Общий кубический сплайн задается в виде
Рис.5.10. Кубический B-сплайн и модуль его Фурье-образа. Имеется несколько естественных ограничений на данное интерполяционное ядро. Так, требуется чтобы значение интерполирующей функции в нуле было равно 1, а в точках с координатами 1 и 2 равно 0. Кроме того, необходимо, чтобы ядро было непрерывным в точках 0 и 1, чтобы наклон в точках 0 и 2 был равен 0, и первая производная была непрерывной. В совокупности это дает семь ограничений, в то время как неизвестных параметров восемь и, следовательно, нужно еще одно условие для однозначного определения интерполяционного ядра. В частности, если интерполяционную функцию привести в соответствие с первыми тремя членами ее разложения в ряд Тейлора, тогда неизвестный параметр
Когда константа в пределах от -1 (рис.5.11.а) до -1/2 (рис.5.11.б), в каждом конкретном случае можно добиться приемлемой точности при передискретизации. а) б) Рис.5.11. Высокоразрешающий интерполяционный кубический сплайн и его частотная характеристика : a) - a=-1; б) - а= - 0.5
|