§ 160. Сложение токов при параллельном включении сопротивлений в цепь переменного тока.Включим в цепь переменного тока две параллельные ветви, содержащие активные сопротивления Рис. 301. Сопротивления в параллельных ветвях цепи переменного тока одинаковы по своей природе Таким образом, если сопротивления параллельных ветвей одинаковы по своей природе, то ток в неразветвленной цепи равен сумме токов в отдельных ветвях. Это справедливо, конечно, и в том случае, когда имеются не две ветви, а любое их число. Заменим теперь в одной из ветвей (рис. 302,а и б) активное сопротивление емкостным (конденсатором) или индуктивным (катушкой с большой индуктивностью и малым активным сопротивлением). Опыт дает в этом случае результат, кажущийся на первый взгляд странным: ток в неразветвленной цепи Рис. 302. Сопротивления в параллельных ветвях переменного тока различны по своей природе Таким образом, если сопротивления параллельных ветвей различны по своей природе, то ток в неразветвленной цепи меньше суммы токов в отдельных ветвях. Чтобы разобраться в этих явлениях, заменим в схемах на рис. 301 и 302 амперметры осциллографами и запишем форму кривой тока в каждой из параллельных ветвей. Оказывается, что токи разной природы в каждой из ветвей не совпадают по фазе ни друг с другом, ни с током в неразветвленной цепи. В частности, ток в цепи с активным сопротивлением опережает по фазе на четверть периода ток в цепи с емкостным сопротивлением и отстает по фазе на четверть периода от тока в цепи с индуктивным сопротивлением. В этом случае кривые, изображающие форму тока в неразветвленной цепи и в какой-нибудь из ветвей, расположены относительно друг друга так, как кривые 1 и 2 на рис. 294. В общем же случае, в зависимости от соотношения между активным и емкостным (или индуктивным) сопротивлениями каждой из ветвей, сдвиг фаз между током в этой ветви и неразветвленным током может иметь любое значение от нуля до Это несовпадение фаз токов в параллельных ветвях с сопротивлениями, различными по своей природе, и является причиной тех явлений, о которых было сказано в начале этого параграфа. Действительно, для мгновенных значений токов, т. е. для тех значений, которые эти токи имеют в один и тот же момент времени, соблюдается известное правило:
Но для амплитуд (или действующих значений) этих токов это правило не соблюдается, потому что результат сложения двух синусоидальных токов или иных двух величин, изменяющихся по закону синуса, зависит от разности фаз между складываемыми величинами. В самом деле, предположим для простоты, что амплитуды складываемых токов одинаковы, а разность фаз между ними равна нулю. Тогда мгновенное значение суммы двух токов будет равно просто удвоенному значению мгновенного значения одного из складываемых токов, т. е. форма результирующего тока будет представлять собой синусоиду с тем же периодом и фазой, но с удвоенной амплитудой. Если амплитуды складываемых токов различны (рис. 303,а), то сумма их представляет собой синусоиду с амплитудой, равной сумме амплитуд складываемых токов. Это имеет место, когда разность фаз между складываемыми токами равна нулю, например когда сопротивления в обеих параллельных ветвях одинаковы по своей природе. Рис. 303. Сложение двух синусоидальных переменных токов. Складываемые токи: а) совпадают по фазе ( Рассмотрим теперь другой крайний случай, когда складываемые токи, имея равные амплитуды, противоположны по фазе, т. е. разность фаз между ними равна В общем случае при сложении двух синусоидальных токов одной и той же частоты со сдвигом фаз мы получаем всегда синусоидальный ток той же частоты с амплитудой, которая в зависимости от разности фаз
|