14.8. МЕТОДЫ РЕСТАВРАЦИИ С ИСПОЛЬЗОВАНИЕМ ОГРАНИЧЕНИЙДля повышения качества исправленных изображений в моделях с плохой обусловленностью было предложено [19] вводить ограничения в виде равенств и ограничения в виде неравенств. Можно, например, задавать значения отдельных элементов, отношения отдельных элементов, сумму части или всех элементов или же предельно допустимые уровни элементов. В переопределенной линейной модели могут использоваться ограничения в виде системы линейных уравнений
где
где
где
будет иметь нулевое значение тогда и только тогда, когда ограничения удовлетворяются истинным вектором Часто доступна априорная информация в виде ограничений-неравенств, обусловливающих значения элементов изображения. Физика процесса формирования изображений такова, что элементы изображения должны иметь неотрицательные значения. Часто известна верхняя граница этих значений, поскольку при преобразовании изображений в цифровую форму на каждый элемент отводится конечное число двоичных разрядов. Кроме того, вводятся вполне очевидные ограничения по уровню, связанные с необходимостью подогнать контрастный диапазон реставрированного изображения к динамическому диапазону дисплея. Один из возможных подходов - линейное масштабирование контраста исправленного изображения с учетом заданного динамического диапазона дисплея. Прибегать к этой процедуре обычно нежелательно, поскольку появление даже нескольких элементов с ненормально высокой яркостью приводит к снижению контраста всего изображения. Следует также учитывать, что контрастное масштабирование обычно влияет на среднюю яркость исправленного изображения. Другой распространенный метод воспроизведения изображений предусматривает ограничение уровня элементов в случае превышения порогового уровня дисплея. Хотя этот метод превосходит метод контрастного масштабирования по субъективному качеству изображения, он может дать смещение оценки. Если реставрация изображений должна осуществляться с априорно вводимыми ограничениями уровней элементов, то лучше всего учесть эти ограничения непосредственно при реставрации; введение ограничений после завершения процедуры реставрации дает худший результат. Известно несколько методов реставрации изображений с использованием ограничений в виде неравенств. Рассмотрим общий случай реставрации с ограничениями, когда вектор оценки
где Рис. 14.8.1. Сравнение изображений, реставрированных без ограничений и с ограничениями. Нерезкость внесена с помощью импульсного отклика гауссовой формы Априорная информация, включающая ограничения в виде неравенств, может обеспечить существенное уменьшение неопределенности элементов исправленного изображения; однако, как и в случае использования ограничений-равенств, оценка может получить неизвестное смещение. Рис. 14.8.1 иллюстрирует качество реставрации изображения с гауссовой нерезкостью, соответствующей переопределенной модели (см. гл. 13). Изображение на рис. 14.8.1, б реставрировано методом псевдообращения матриц, а изображение на рис. 14.8.1, в - с использованием ограничений-неравенств [19], требующих, чтобы яркость каждого элемента исправленного изображения находилась в диапазоне 0—255. Введение ограничений обеспечивает существенное повышение качества реставрации. К сожалению, решение задачи квадратического программирования, которое использовано в рассматриваемом примере, требует выполнения большого объема вычислений. Распространить принцип «грубой силы» на рассматриваемый метод не представляется возможным. Предложен ряд способов улучшения метода реставрации изображений с использованием ограничений. Один простой подход, основанный на идее гомоморфной фильтрации, заключается в логарифмировании каждого наблюдаемого изображения. Потенцирование соответствующих оценок автоматически приводит к строго положительному результату. Берг [5, 36, 37] и Фриден [5, 38, 39] разработали методы реставрации с ограничением в виде условия положительности, основанные на принципе максимума энтропии, который впервые был применен для оценивания плотности вероятности по ее моментам. Метод Берга, дающий решение в замкнутой форме, при наличии шума иногда приводит к неустойчивым оценкам. Итеративный метод Фридена с успехом был применен для обработки одномерных сигналов и небольших изображений. Джанссон и др. [40] на основе результатов более ранней работы Ван Циттера [41] разработали итеративный метод реставрации, в котором используются итерационные уравнения вида [5, 40]
где индекс
где Реставрация изображений с ограничениями - развивающаяся область исследований. Здесь ведутся настойчивые поиски эффективных вычислительных методов, минимизирующих ошибки оценивания при наличии дополнительных ограничений.
|