Часть I Введение в анализ данныхГлава 1 Основные понятияВ этой книге описываются методы обработки информации, представленной в различной форме — в виде «данных», «знаний», «структур» и т. д. В основе анализа всех этих видов информации лежат две процедуры: процедура обнаружения закономерностей, содержащихся в представленной информации, и процедура использования обнаруженных закономерностей для предсказания значения одной части информации по известным значениям другой ее части. Но прежде чем переходить к описанию этих процедур, нужно пояснить смысл употребляемых в книге терминов, в частности таких распространенных, как данные, знания, гипотеза, закономерность и т. п. § 1. Чем отличаются «данные» от «знаний»?Исходная информация, которую нужно обрабатывать, чаще всего имеет вид числовых таблиц (матриц), состоящих из На пересечении Пусть в таблице данных представлены описания большого количества жилых домов, а нас интересуют только три свойства этих домов: из какого материала они построены, в какой цвет покрашены их стены и какой они высоты. После изучения таблицы данных мы можем обнаружить некоторые закономерности. Например, выясняется, что все панельные дома, окрашенные в серый цвет, имеют высоту от 15 до 25 м, панельные зеленые дома — от 8 до 16 м, а кирпичные, вне зависимости от цвета стен, имеют высоту меньше 10 м. Обозначим признак «вид строительного материала» через Эти высказывания не содержат информации в виде конкретных характеристик каждого отдельного дома, но зато отражают наши знания о некоторых обобщенных характеристиках всех домов, описанных в таблице данных. Так выглядит переход от данных к знаниям. Знания представляют собой краткое обобщенное описание основного содержания информации, представленной в данных. Знания могут быть представлены в различной форме. В дальнейшем мы будем пользоваться приведенной выше формой в виде логических правил типа «если ... то ...».
|