§ 5. Алгебра четырехвекторов
Четырехвекторы обозначаются иначе, чем тривекторы. Например, тривектор импульса обозначают
. Если хотят дать более детальную запись, то говорят о трех компонентах
, можно писать и короче
, оговаривая, что
принимает три значения
и
. Для четырех векторов мы будем применять похожее обозначение: будем писать
, а
пусть заменяет собой четыре направления
.
Конечно, можно пользоваться любыми обозначениями. Не улыбайтесь, что мы так много говорим об обозначениях; учитесь изобретать их: в них вся сила. Ведь и сама математика в значительной степени состоит в изобретении лучших обозначений. Идея четырехвектора - это тоже усовершенствование обозначений с таким расчетом, чтобы преобразования было легче запомнить.
Итак,
- это общий четырехвектор,
- четырехимпульс,
- энергия,
- импульс в направлении
,
- в направлении
,
- в направлении
. Складывая четырехвекторы, складывают их соответствующие компоненты.
Если четырехвекторы связаны каким-то уравнением, то это значит, что уравнение выполняется для любой компоненты. Например, если закон сохранения тривектора импульса соблюдается в столкновении частиц, т. е. сумма импульсов множества взаимодействующих или сталкивающихся частиц постоянна, то это означает, что сумма всех компонент импульсов постоянна и в направлении
, и в направлении
, и в направлении
. Сам по себе такой закон в теории относительности невозможен: он неполон; это все равно, что говорить только о двух компонентах тривектора. Неполон он потому, что при повороте осей разные компоненты смешиваются, значит, в закон сохранения должны войти все три компоненты. Таким образом, в теории относительности нужно дополнить закон сохранения импульса, включив в него сохранение временной компоненты. Абсолютно необходимо, чтобы сохранение первых трех компонент сопровождалось сохранением четвертой, иначе не получится релятивистской инвариантности. Четвертое уравнение - это как раз сохранение энергии; оно должно сопровождать сохранение импульса для того, чтобы четырехвекторные соотношения в геометрии пространства-времени были справедливы. Итак, закон сохранения энергии и импульса в четырехмерном обозначении таков:
, (17.13)
или в чуть измененных обозначениях
, (17.14)
где
относится к сталкивающимся частицам,
- к частицам, возникающим при столкновении, а
или
. Вы спросите: «А что по осям координат?» Это неважно. Закон верен для любых компонент, при любых осях.
В векторном анализе нам встретилось одно понятие - скалярное произведение двух векторов. Что соответствует ему в пространстве-времени? При обычных вращениях неизменной остается величина
. В четырехмерном мире таким свойством при преобразованиях обладает величина
[уравнение (17.3)]. Как можно это записать? Можно было бы, например, пользоваться значком наподобие
, но обычно пишут
. (17.15)
Штрих при
напоминает, что первый, «временной» член положителен, а остальные три отрицательны. Эта величина одна и та же в любой системе координат, и можно назвать ее квадратом длины четырехвектора. Чему равен, например, квадрат длины четырехвектора импульса отдельной частицы? Ответ:
, или, иначе,
, потому что
это и есть
. Чему равно
? Должно по условию получиться что-то, что одинаково в любой системе координат, в частности и в системе координат, которая движется вместе с частицей, так что частица в этой системе покоится. Но если частица неподвижна, значит, у нее нет импульса. Значит, у нее остается только энергия, совпадающая в этом случае с ее массой. Итак,
, т. е. квадрат длины четырехвектора импульса равен
.
Пользуясь выражением для квадрата вектора, легко изобрести скалярное произведение двух четырехвекторов: если один из них
, а другой
, то скалярное произведение определяется так:
. (17.16)
Это выражение не меняется при преобразовании системы координат.
Следует еще упомянуть о частицах с нулевой массой покоя, например о фотоне - частице света. Фотон похож на частицу тем, что он переносит энергию и импульс. Энергия фотона равна произведению некоторой постоянной (постоянная Планка) на частоту света:
. Такой фотон несет с собой и импульс, который (как у всякой частицы) равен постоянной
, деленной на длину волны света:
. Но у фотона связь между частотой и длиной волны вполне определенна:
. (Количество волн, проходящих за 1 сек, помноженное на их длину, даст расстояние, проходимое светом в 1 сек, т. е.
.) Мы сходу получаем, что энергия фотона равна его импульсу, умноженному на
, и, далее, полагая
, что энергия равна импульсу. Но это и значит, что масса покоя равна нулю. Давайте вдумаемся в это любопытное обстоятельство. Если фотон - частица с нулевой массой покоя, то что с ним бывает, когда он останавливается? Но он никогда не останавливается! Он всегда движется со скоростью
. Обычная формула для энергии - это
. Можно ли утверждать, что при
и
энергия фотона равна нулю? Нет, нельзя; на самом деле фотон может обладать (и обладает) энергией, хоть и не имеет массы покоя, за счет того, что всегда движется со скоростью света!
Мы знаем также, что импульс любой частицы равен произведению полной энергии на скорость:
при
, или, в обычных единицах,
. Для любой частицы, движущейся со скоростью света,
, если
. Формулы для энергии фотона в движущейся системе даются по-прежнему уравнением (17.12), но вместо импульса туда нужно подставить энергию, умноженную на
(на 1). Изменение энергии при преобразовании означает изменение частоты света. Это явление называется эффектом Допплера; формулу для него легко получить из уравнения (17.12), положив
и
.
Как сказал Минковский: «Пространство само по себе и время само по себе погрузятся в реку забвенья, а останется жить лишь своеобразный их союз».