§ 3. Ускорение частицы в индуцированном электрическом поле; бетатронМы уже говорили, что э. д. с., созданная изменяющимся магнитным полем, может существовать даже в отсутствие проводников; т. е. магнитная индукция возможна без проводов. Мы можем представить себе э. д. с. вдоль произвольной математической кривой в пространстве. Она определяется как тангенциальная компонента В качестве примера действия такого индуцированного электрического поля мы сейчас рассмотрим движение электрона в изменяющемся магнитном поле. Представим себе магнитное поле, которое всюду на плоскости направлено по вертикали (фиг. 17.4). Магнитное поле создается электромагнитом, но детали нас здесь интересовать не будут. В нашем примере мы предположим, что магнитное поле симметрично относительно Фиг. 17.4. Электрон ускоряется в аксиально-симметричном магнитном поле, зависящем от времени. некой оси, т. е. напряженность магнитного поля зависит только от расстояния до оси. Магнитное поле меняется также со временем. Представим теперь, что электрон в этом поле движется по круговой траектории постоянного радиуса с центром на оси поля. (Позже мы увидим, как можно создать такое движение.) Меняющееся магнитное поле создает электрическое поле
Поскольку мы предположили, что
Электрон будет чувствовать электрическую силу
Для принятой нами круговой орбиты электрическая сила, действующая на электрон, всегда направлена по движению, поэтому полный импульс будет расти со скоростью, даваемой равенством (17.5). Комбинируя (17.5) и (17.4), можно связать скорость изменения импульса с изменением среднего магнитного поля:
Интегрируя по
где Чтобы понять, как работает бетатрон, необходимо представлять себе принцип движения электрона по окружности. В гл. 11 (вып. 1) мы уже обсуждали этот принцип. Если на орбите электрона создать магнитное поле
Когда частица движется по окружности, скорость изменения поперечного импульса равна величине полного импульса, умноженной на
где, поскольку движение круговое,
Полагая магнитную силу равной поперечному ускорению, имеем
где В приведенном в действие бетатроне импульс электрона, согласно выражению (17.7), растет пропорционально
Для правильной работы бетатрона нужно, чтобы среднее магнитное поле внутри орбиты росло в два раза быстрее магнитного поля на самой орбите. При этих условиях с ростом энергии частицы, увеличивающейся за счет индуцированного электрического поля, магнитное поле на орбите растет как раз со скоростью, нужной для удержания частицы на окружности. Бетатрон используется для разгона электронов до энергий в десятки или даже в сотни миллионов электронвольт. Однако по ряду причин для ускорения электронов до энергий, много больших нескольких сот миллионов электронвольт, эта машина становится невыгодной. Одна из этих причин - трудность достижения на практике требуемой высокой величины среднего магнитного поля внутри орбиты, а вторая - несправедливость формулы (17.6) для очень больших энергий, так как в ней не учитывается потеря энергии частицей за счет излучения электромагнитной энергии (так называемое синхротронное излучение, см. гл. 34, вып. 3). По этим причинам ускорение электронов до самых больших энергий - до многих миллиардов электронвольт - совершается посредством машины другого рода, называемой синхротроном.
|