§ 2. Конденсатор на больших частотахА теперь обсудим подробнее поведение конденсатора - геометрически идеального конденсатора, - когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, потому что геометрия пары обкладок много проще геометрии катушки.) Итак, вот конденсатор (фиг. 23.4,а), состоит он из двух параллельных круговых обкладок, соединенных с внешним генератором парой проводов. Если зарядить конденсатор постоянным током, то на одной из обкладок появится положительный заряд, на другой - отрицательный, а между обкладками будет однородное электрическое поле. Фиг. 23.4. Электрическое и магнитное поля между обкладками конденсатора. Представим теперь, что вместо постоянного тока к обкладкам приложено переменное напряжение низкой частоты. (После мы увидим, какая частота «низкая», а какая «высокая».) Конденсатор, скажем, соединен с низкочастотным генератором. Когда напряжение меняется, то с верхней обкладки положительный заряд убирается и прикладывается отрицательный. В момент, тогда это происходит, электрическое поле исчезает, а потом восстанавливается, но уже в обратную сторону. Заряд медленно плещется туда-сюда, и поле поспевает за ним. В каждый момент электрическое поле однородно (фиг. 23.4,б); есть, правда, небольшие краевые эффекты, но мы намерены ими пренебречь. Величину электрического поля можно записать в виде
где Но останется ли это справедливым, когда частота возрастет? Нет, потому что при движении электрического поля вверх и вниз через произвольную петлю
Итак, сколько же здесь этого магнитного поля? Это узнать нетрудно. Возьмем в качестве петли
Производная
Иными словами, магнитное поле тоже колеблется, а его величина пропорциональна К какому эффекту это приведет? Когда существует магнитное поле, которое меняется, то возникнут наведенные электрические поля, и действие конденсатора станет слегка похоже на индуктивность. По мере роста частоты магнитное поле усиливается: оно пропорционально скорости изменения Будем увеличивать частоту и посмотрим повнимательнее, что происходит. У нас есть магнитное поле, которое плещется то туда, то сюда. Но тогда и электрическое поле не может, как мы раньше предполагали, остаться однородным! Если имеется изменяющееся магнитное поле, то по закону Фарадея должен существовать и контурный интеграл от электрического поля. Так что если существует заметное магнитное поле (а так и бывает на высоких частотах), то электрическое поле не может быть на всех расстояниях от центра одинаковым. Оно должно так меняться с Посмотрим, сможем ли мы представить себе правильное электрическое поле. Это можно сделать, подсчитав «поправку» к тому, что было на низких частотах, - к однородному полю. Обозначим поле при низких частотах через
где Чтобы найти
Интегралы берутся просто, если вычислять их вдоль линии
Полагая
Заметьте, что Используя для
Дифференцирование по времени даст нам просто еще один множитель
Как и ожидалось, наведенное поле стремится свести на нет первоначальное электрическое поле. Исправленное поле
Электрическое поле в конденсаторе больше уже не однородно; оно имеет параболическую форму (штриховая линия на фиг. 23.5). Вы видите, что наш простенький конденсатор уже слегка усложняется. Фиг. 23.5. Электрическое поле между обкладками конденсатора на высоких частотах. Краевыми эффектами пренебрегли. Наши результаты можно использовать для того, чтобы подсчитать импеданс конденсатора на больших частотах. Зная электрическое поле, можно подсчитать заряд обкладок и узнать, как ток через конденсатор зависит от частоты
Вспомните, что это поле появилось от изменения
Поскольку
Значит,
Подставляя сюда
Но мы еще не кончили! Раз магнитное поле
Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:
Если теперь наше дважды исправленное поле записать в виде
Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значение поля лежит чуть выше кривой Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново подправленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для Очередная поправка к электрическому полю равна
С этой степенью точности все электрическое поле дается, стало быть, формулой
где численные коэффициенты написаны в таком виде, что становится ясно, как продолжить ряд. Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением
Тогда искомое решение есть произведение
Мы обозначили нашу специальную функцию через Другие функции Бесселя - Полностью скорректированное электрическое поле между обкладками нашего кругового конденсатора, даваемое формулой (23.17), изображено на фиг. 23.5 сплошной линией. Для не очень больших частот нашего второго приближения вполне хватает. Третье приближение было бы еще лучше - настолько хорошо, что если его начертить, то вы бы не заметили разницы между ним и сплошной линией. В следующем параграфе вы увидите, однако, что может понадобиться и весь ряд, чтобы получилось аккуратное описание поля на больших радиусах или на больших частотах.
|