§ 3. Стационарный поток; теорема БернуллиВернемся к уравнениям движения (40.8), но ограничимся теперь приближением «стационарного» потока. Под стационарным потоком я подразумеваю поток, скорость которого в любом месте жидкости никогда не изменяется. Жидкость в любой точке постоянно заменяется новой жидкостью, движущейся в точности таким же образом. Картина скоростей всегда выглядит одинаково, т. е. Фиг. 40.5. Линии тока стационарного потока. Стационарность потока вовсе не означает, что ничего не происходит - частички жидкости движутся и изменяют свои скорости. Это означает только то, что
Согласно этому уравнению, при малых перемещениях в направлении скорости жидкости величина внутри скобок не изменяется. В стационарном потоке все перемещения направлены вдоль линий тока; поэтому уравнение (40.12) говорит, что для всех точек вдоль линии тока
Это и есть теорема Бернулли. Постоянная, вообще говоря, для различных линий тока может быть разной; мы знаем только, что левая часть уравнения (40.13) постоянна всюду вдоль данной линии тока. Заметьте, кстати, что если стационарный поток безвихревой, т. е. если для него
так что
Оно в точности напоминает уравнение (40.13), за исключением того, что теперь постоянная во всей жидкости одна и та же. На самом деле теорема Бернулли не означает ничего большего, чем утверждение о сохранении энергии. Подобные теоремы о сохранении дают нам массу информации о потоке без детального решения уравнений. Теорема Бернулли настолько важна и настолько проста, что мне бы хотелось показать вам, как можно ее получить другим способом, отличным от тех формальных вычислений, которые мы только что провели. Представьте себе пучок линий тока, образующих трубку тока (фиг. 40.6,а). Поскольку стенки трубки образуются линиями тока, то жидкость через них не протекает. Обозначим площадь на одном конце трубки через
Таким образом, мы получаем равенство
Оно говорит нам, что при постоянном Фиг. 40.6. Движение жидкости в трубке. Вычислим теперь работу, произведенную давлением в жидкости. Работа, произведенная над жидкостью, входящей со стороны сечения
что должно быть равно возрастанию энергии массы жидкости
где
где
Но мы видели, что
а это как раз приводит нас к результату Бернулли, где имеется дополнительный член, представляющий внутреннюю энергию. Если жидкость несжимаемая, то внутренняя энергия с обеих сторон одна и та же и мы снова убеждаемся в справедливости уравнения (40.14) вдоль любой линии тока. Рассмотрим теперь некоторые простые примеры, в которых интеграл Бернулли позволяет нам сразу описать поток. Предположим, что из отверстия вблизи дна резервуара вытекает вода (фиг. 40.7). Рассмотрим случай, когда скорость потока
или
Скорость получилась в точности равной скорости предмета, падающего с высоты Фиг. 40.7. Вытекание жидкости из резервуара. Если выходная труба вдается в резервуар, как показано на фиг. 40.8, то можно весьма красиво доказать, что коэффициент истечения в точности равен 50%. Я лишь намекну вам, как проводится это доказательство. Фиг. 40.8. Если выходная труба вставлена внутрь жидкости, то сокращение струи составляет половину площади отверстия. Чтобы получить скорость, мы использовали закон сохранения энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходящей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое давление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно уравновешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отверстия, наподобие показанного на фиг. 40.7, ибо увеличение скорости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить. Рассмотрим теперь другой пример - горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода. Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко продемонстрировать этот эффект, измеряя давление в разных местах с различным сечением с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действительно оказывается меньше, чем в широких. Если после сужения площадь сечения возвращается к своей прежней величине - той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вызывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость Фиг. 40.9. Там, где скорость повышается, давление понижается. Этот результат можно проверить с помощью еще одного простого опыта. Представьте, что у нас есть резервуар с водой и выходной трубой, которая выбрасывает струю воды вверх (фиг. 40.10). Если бы скорость истечения была в точности равна Фиг. 40.10. Доказательство того, что Пытались ли вы когда-нибудь, дунув между двумя слипшимися листками бумаги, оторвать их друг от друга? Попытайтесь! Они сойдутся вновь. Причина, разумеется, состоит в том, что воздух между листами имеет большую скорость, нежели когда он выходит наружу. Поэтому давление между листами ниже атмосферного, и они вместо того, чтобы разлететься в разные стороны, соединятся.
|