§ 2. Примесные полупроводникиДо сих пор мы говорили только о двух путях введения добавочных электронов в кристаллическую решетку, которая во всем остальном совершенно идеальна. Один путь - это впрыснуть электрон от внешнего источника, а другой - выбить связанный электрон из нейтрального атома, сотворив одновременно и электрон и дырку. Но можно внедрить электроны в зону проводимости кристалла совершенно иным способом. Представим себе кристалл германия, в котором один из атомов германия заменен атомом мышьяка. У атомов германия валентность равна 4, и кристаллическая структура контролируется четырьмя валентными электронами. А у мышьяка валентность равна 5. И вот оказывается, что отдельный атом мышьяка в состоянии засесть в решетке германия (потому что габариты у него как раз такие, как надо), но при этом он будет вынужден действовать как четырехвалентный атом, тратя четыре валентных электрона из своего запаса на создание кристаллических связей и отбрасывая пятый. Этот лишний электрон привязан к нему очень слабо - энергия связи менее 1/10 эв. При комнатной температуре электрон с легкостью раздобудет такую небольшую энергию у тепловой энергии кристалла и отправится на свой страх и риск блуждать по решетке на правах свободного электрона. Примесный атом наподобие мышьяка называется донорным узлом, потому что он может снабдить кристалл отрицательным носителем. Если кристалл германия выращивается из расплава, куда было добавлено небольшое количество мышьяка, то мышьяковые донорские пункты распределятся по всему кристаллу и у кристалла появится определенная плотность внедренных отрицательных носителей. Могло бы показаться, что малейшее электрическое поле, приложенное к кристаллу, смело бы эти носители прочь. Но этого не случится, ведь каждый атом мышьяка в теле кристалла заряжен положительно. Чтобы весь кристалл оставался нейтральным, средняя плотность отрицательных носителей - электронов - должна быть равна плотности донорных узлов. Если вы приложите к граням этого кристалла два электрода и подключите их к батарейке, пойдет ток; но если с одного конца уносятся электроны-носители, то на другой конец должны поступать свежие электроны проводимости, так что средняя плотность электронов проводимости остается все время примерно равной плотности донорных узлов. Поскольку донорные узлы заряжены положительно, у них должно наблюдаться стремление перехватывать некоторые из электронов проводимости, когда последние блуждают по кристаллу. Поэтому донорный узел должен действовать как раз как та ловушка, о которой мы говорили в предыдущем параграфе. Но если энергия захвата достаточно мала (как у мышьяка, например), то общее число захваченных в какой-то момент носителей должно составлять лишь малую часть их общего числа. Для полного понимания поведения полупроводников этот захват, конечно, следует иметь в виду. Однако мы в дальнейшем будем считать, что энергия захвата настолько низка, а температура так высока, что на донорных узлах нет электронов. Конечно, это всего-навсего приближение. Можно также внедрить в кристалл германия атом примеси с валентностью 3, скажем атом алюминия. Этот атом пытается выдать себя за объект с валентностью 4, воруя добавочный электрон у соседей. Он может украсть электрон у одного из соседних атомов германия и оказаться в конце концов отрицательно заряженным атомом с эффективной валентностью 4. Конечно, когда он стащит у атома германия электрон, там остается дырка; и эта дырка начинает блуждать по кристаллу на правах положительного носителя. Атом примеси, который способен таким путем образовать дырку, называется акцепторам от корня «акцепт» - принимать. Если кристалл германия или кристалл кремния выращен из расплава, в который была добавлена небольшая присадка алюминия, то в кристалле окажется определенная плотность дырок, которые действуют как положительные носители. Когда к полупроводнику добавлена донорная или акцепторная примесь, мы говорим о «примесном» полупроводнике. Когда кристалл германия с некоторым количеством внедренной донорной примеси находится при комнатной температуре, то электроны проводимости поставляются как донорными узлами, так и путем рождения электронно-дырочных пар за счет тепловой энергии. Естественно, электроны от обоих источников вполне эквивалентны друг другу, и в игру статистических процессов, ведущих к равновесию, входит их полное число Если в кристаллической решетке добавлена примесь акцепторного типа, то кое-какие из новых дырок, блуждая, начнут аннигилировать с некоторыми свободными электронами, создаваемыми тепловыми флуктуациями. Это будет продолжаться до тех пор, пока не выполнится уравнение (12.4). В равновесных условиях количество положительных носителей возрастает, а количество отрицательных убывает, поддерживая произведение постоянным. Материал с избытком положительных носителей называется полупроводником « Если к полупроводниковому кристаллу приложить пару электродов и присоединить их к источнику разницы потенциалов, то внутри кристалла появится электрическое поле. Оно вынудит двигаться положительные и отрицательные носители, и потечет электрический ток. Посмотрим сперва, что произойдет в материале Если к полупроводнику
Зная скорость дрейфа, можно найти ток. Плотность электрического тока
Мы видим, что плотность тока пропорциональна электрическому полю; такие полупроводниковые материалы подчиняются закону Ома. Коэффициент пропорциональности между
Для материалов Те же рассуждения можно приложить к веществу
Для очень чистых веществ
|