§ 3. Независимые частицыВ предыдущем параграфе мы написали гамильтониан (13.15) для двухчастичной системы. Затем, пользуясь приближением, эквивалентным пренебрежению каким-либо «взаимодействием» между двумя частицами, мы нашли стационарные состояния, описываемые формулами (13.17) и (13.18). Это состояние попросту есть произведение двух одночастичных состояний. Но решение, которое мы написали для Все дело в том, что мы не заставили наше решение (13.15) подчиниться этому добавочному условию. К счастью, пока нетрудно все исправить. Заметьте, во-первых, что ничуть не хуже формулы (13.18) другое решение уравнения Гамильтона:
И даже энергия здесь та же самая, что была в (13.18). Значит, любая линейная комбинация (13.18) и (13.23) также будет решением системы и будет обладать по-прежнему энергией, даваемой (13.19). Решение, которое нужно выбрать по требованиям симметрии, - просто сумма (13.18) и (13.23):
Теперь при данных В этот момент полезно вспомнить гл. 2 (вып. 8) и наш рассказ о тождественных частицах. Мы просто только что показали, что частицы спиновых волн (магноны) ведут себя как тождественные бозе-частицы. Все амплитуды обязаны быть симметричны по координатам двух частиц; это все равно, что сказать, что после «обмена двумя частицами» мы снова получим ту же амплитуду с тем же знаком. Но вы можете подумать: «Почему же мы все-таки решили в (13.24) сложить два члена? Почему не вычесть?» Ведь при знаке минус обмен Наше обсуждение имело двойную цель: во-первых, рассказать вам кое-что о спиновых волнах; во-вторых, продемонстрировать состояние, амплитуда которого равна произведению двух амплитуд, а энергия равна сумме энергий, отвечающих этим амплитудам. Для независимых частиц амплитуда получается умножением, а энергия - сложением. Почему сложением - легко понять. Энергия - это коэффициент при Нам понадобилось довольно долго говорить, чтобы сообщить очень простую вещь: когда вы не учитываете взаимодействия между частицами, вы вправе рассматривать каждую частицу независимо. Они могут отдельно существовать во всевозможных состояниях, в которых они пребывали бы и порознь, и давать тот же вклад в энергию, какой давали бы порознь. Однако следует помнить, что если частицы тождественны, то они могут вести себя как бозе- или ферми-частицы в зависимости от задачи. Например, пара электронов, добавленная к Кристаллу, ведет себя как ферми-частицы. Обмен местоположениями двух электронов приводит к перемене знака амплитуды. В уравнении, соответствующем (13.24), между двумя слагаемыми стоит знак минус. Как следствие этого: две ферми-частицы не могут пребывать в точности в одних и тех же условиях - с одинаковыми спинами и одинаковыми
|