2.1. Автокорреляционные свойства стационарных моделей2.1.1. Временные ряды и стохастические процессыВременные ряды. Временной ряд – это множество наблюдений, генерируемых последовательно во времени. Если время непрерывно, временно ряд называется непрерывным. Если время изменяется дискретно, временной ряд дискретен. Наблюдения дискретного временного ряда, сделанные в моменты времени Дискретные временные ряды могут появляться двумя путями. 1) Выборкой из непрерывных временных рядов, например, в ситуации, показанной на рис. 1.2, где значения непрерывных входа и выхода газовой печи считываются с интервалом 9 с. 2) Накоплением переменной в течение некоторого периода времени; примерами могут служить дождевые осадки, которые обычно накапливаются за такие периоды, как день или месяц, или выход партий продукта, накапливающегося за время цикла. Например, на рис. 2.1 показан временной ряд, состоящий из значений выхода 70 последовательных партий продукта химического процесса. Рис. 2.1 Выход 70 последовательных партий продукта химического процесса. Детерминированные и случайные временные ряды. Если будущие значения временного ряда точно определены какой-либо математической функцией, например, такой, как
временной ряд называют детерминированным. Если будущие значения могут быть описаны только с помощью распределения вероятностей, временной ряд называют недетерминированным, или просто случайным. Данные о партиях продукта на рис. 2.1 – это пример случайного временного ряда. Хотя в этом ряду имеется отчетливая тенденция к чередованию «вверх-вниз», невозможно точно предсказать выход следующей партии. В этой книге мы будем исследовать именно такие случайные временные ряды. Стохастические процессы. Статическое явление, развивающееся во времени согласно законам теории вероятности, называется стохастическим процессом. Мы часто будем называть его просто процессом, опуская слово «стохастический». Подлежащий анализу временной ряд может быть рассматриваться как одна частная реализация изучаемой системы, генерируемая скрытым вероятностным механизмом. Другими словами, анализируя временной ряд, мы рассматриваем его как реализацию стохастического процесса. Рис. 2.2 Наблюденный временной ряд (жирная линия) и другие временные ряды, являющиеся реализациями одного и того же стохастического ряда. Рис. 2. 3. Изолинии плотности двумерного распределения вероятности, описывающего стохастический процесс в моменты времени Например, анализирую данные о выходе партии продукта на рис 2.1, мы можем представить себе другие множества наблюдений (другие реализации порождающего эти наблюдения стохастического процесса), которые могут быть генерированы той же самой химической системой, за те же Подобным образом наблюдения в любые два момента времени,
|