ПОСЛЕДОВАТЕЛЬНОСТЬПоследовательность - одно из основных понятий математики. Последовательность может быть составлена из чисел, точек, функций, векторов и т.д. Последовательность считается заданной, если указан закон, по которому каждому натуральному числу ставится в соответствие элемент некоторого множества. Последовательность записывается в виде , или кратко . Элементы называются членами последовательности, - первым, - вторым, - общим (-м) членом последовательности. Наиболее часто рассматривают числовые последовательности, т.е. последовательности, члены которых - числа. Аналитический способ - самый простой способ задания числовой последовательности. Это делают с помощью формулы, выражающей -й член последовательности через его номер . Например, если , то , , , . Другой способ - рекуррентный (от латинского слова recurrens - «возвращающийся»), когда задают несколько первых членов последовательности и правило, позволяющее вычислять каждый следующий член через предыдущие. Например: , . (1) Примеры числовых последовательностей - арифметическая прогрессия и геометрическая прогрессия. Интересно проследить поведение членов последовательности при неограниченном возрастании номера (то, что неограниченно возрастает, записывается в виде и читается: « стремится к бесконечности»). Рассмотрим последовательность с общим членом : , , , …, , …. Все члены этой последовательности отличны от нуля, но чем больше , тем меньше отличается от нуля. Члены этой последовательности при неограниченном возрастании стремятся к нулю. Говорят, что число нуль есть предел этой последовательности. Другой пример: - определяет последовательность , , , , …. Члены этой последовательности также стремятся к нулю, но они то больше нуля, то меньше нуля - своего предела. Рассмотрим еще пример: . Если представить в виде , (2) то станет понятно, что эта последовательность стремится к единице. Дадим определение предела последовательности. Число называется пределом последовательности , если для любого положительного числа можно указать такой номер , что при всех выполняется неравенство . Если есть предел последовательности , то пишут , или ( - три первые буквы латинского слова limes - «предел»). Это определение станет понятнее, если ему придать геометрический смысл. Заключим число в интервал (рис. 1). Число есть предел последовательности , если независимо от малости интервала все члены последовательности с номерами, большими некоторого , будут лежать в этом интервале. Иными словами, вне любого интервала может находиться лишь конечное число членов последовательности. Рис. 1 Для рассмотренной последовательности в -окрестность точки нуль при попадают все члены последовательности, кроме первых десяти, а при - все члены последовательности, кроме первых ста. Последовательность, имеющая предел, называется сходящейся, а не имеющая предела - расходящейся. Вот пример расходящейся последовательности: . Ее члены попеременно равны и и не стремятся ни к какому пределу. Если последовательность сходится, то она ограничена, т.е. существуют такие числа и , что все члены последовательности удовлетворяют условию . Отсюда следует, что все неограниченные последовательности расходящиеся. Таковы последовательности: «Пристальное, глубокое изучение природы есть источник самых плодотворных открытий математики». Ж. Фурье Стремящаяся к нулю последовательность называется бесконечно малой. Понятие бесконечно малой может быть положено в основу общего определения предела последовательности, так как предел последовательности равен тогда, и только тогда, когда представимо в виде суммы , где - бесконечно малая. Рассмотренные последовательности являются бесконечно малыми. Последовательность , как следует из (2), отличается от 1 на бесконечно малую , и потому предел этой последовательности равен 1. Большое значение в математическом анализе имеет также понятие бесконечно большой последовательности. Последовательность называется бесконечно большой, если последовательность бесконечно малая. Бесконечно большую последовательность записывают в виде , или , и говорят, что она «стремится к бесконечности». Вот примеры бесконечно больших последовательностей: Подчеркнем, что бесконечно большая последовательность не имеет предела. Рассмотрим последовательности и . Можно определить последовательности с общими членами , , и (если ) . Справедлива следующая теорема, которую часто называют теоремой об арифметических действиях с пределами: если последовательности и сходящиеся, то сходятся также последовательности , , , и имеют место равенства: В последнем случае необходимо потребовать, кроме того, чтобы все члены последовательности были отличны от нуля, еще и чтобы выполнялось условие . Применяя эту теорему, можно находить многие пределы. Найдем, например, предел последовательности с общим членом . Представив в виде , установим, что предел числителя и знаменателя существует: поэтому получим: . Важный класс последовательностей - монотонные последовательности. Так называют последовательности возрастающие ( при любом ), убывающие , неубывающие и невозрастающие . Последовательность возрастающая, последовательность убывающая. Можно доказать, что рекуррентно заданная последовательность (1) монотонно возрастает. Представим себе, что последовательность не убывает, т. е. выполняются неравенства , и пусть, кроме того, эта последовательность ограничена сверху, т.е. все не превосходят некоторого числа . Каждый член такой последовательности больше предыдущего или равен ему, но все они не превосходят . Вполне очевидно, что эта последовательность стремится к некоторому числу, которое либо меньше , либо равно . В курсе математического анализа доказывается теорема, что неубывающая и ограниченная сверху последовательность имеет предел (аналогичное утверждение справедливо для невозрастающей и ограниченной снизу последовательности). Эта замечательная теорема дает достаточные условия существования предела. Из нее, например, следует, что последовательность площадей правильных -угольников, вписанных в окружность единичного радиуса, имеет предел, так как является монотонно возрастающей и ограниченной сверху. Предел этой последовательности обозначается . С помощью предела монотонной ограниченной последовательности определяется играющее большую роль в математическом анализе число - основание натуральных логарифмов: . Последовательность (1), как уже отмечалось, монотонная и, кроме того, ограничена сверху. Она имеет предел. Мы легко найдем этот предел. Если он равен , то число должно удовлетворять равенству . Решая это уравнение, получаем .
|