ЭЛЕМЕНТАРНЫЕ ФУНКЦИИОсновными элементарными функциями считаются: многочлен, рациональная функция, которая представляет собой отношение двух многочленов, степенная функция, показательная функция, логарифмическая функция, тригонометрические функции и обратные тригонометрические функции. К элементарным функциям относятся и те функции, которые получаются из элементарных путем применения (конечного числа раз) основных четырех арифметических действий и образования сложной функции. Приведем несколько примеров элементарных функций: , , , , . Отметим, что функция также является элементарной, поскольку . Элементарные функции наиболее изучены и часто используются в приложениях математики. Хотя понятие функции сформировалось лишь в XVII в., однако зависимости между двумя величинами рассматривались и ранее. К XVII в. почти все основные элементарные функции были достаточно хорошо изучены: к этому времени уже были составлены высокой точности таблицы значений тригонометрических функций и появились первые таблицы логарифмов. Дифференциальное исчисление дало законченное исследование основных элементарных функций, в частности было установлено, что производная от элементарной функции есть также элементарная функция. Развитие математического анализа, решение различных прикладных задач привели к рассмотрению функций, которые не являются элементарными. Например, не выражаются через элементарные функции решения дифференциальных уравнений: , . При изучении неэлементарных функций их, как правило, выражают через элементарные с помощью пределов, интегралов, бесконечных рядов и исследуют методами математического анализа.
|