ЛОГАРИФМЛогарифмом числа Логарифм определен для любого положительного числа По определению логарифма справедливо равенство
из которого на основе свойств показательной функции устанавливаются основные свойства логарифмов (здесь
Эти свойства позволяют сводить умножение и деление чисел (представленных в виде степеней некоторого числа, принятого за основание) к сложению и вычитанию показателей степеней, а возведение в степень и извлечение корня – к умножению и делению на показатель степени, поэтому применение логарифмов упрощает выполнение умножения и деления. На этом основан очень популярный прежде счетный прибор логарифмическая линейка, которая сейчас всюду вытесняется микрокалькуляторами. При нашей десятичной системе счисления самым удобным основанием является число 10. Логарифм по основанию 10 называется десятичным логарифмом и обозначается
При основании, равном 10, только логарифмы целых степеней числа 10 представляются целыми числами Любое положительное число Для числа, большего единицы, характеристика на единицу меньше числа цифр у целой части этого числа. Для числа, заключенного между нулем и единицей и записанного десятичной дробью, характеристика отрицательна и равна взятому со знаком минус числу нулей до первой значащей цифры, например для числа 0,0216 его характеристика равна Десятичные логарифмы используются в практике главным образом в силу исторической традиции. Гораздо более важными в математике и ее приложениях являются натуральные логарифмы, т.е. логарифмы с основанием Логарифмы были введены шотландским математиком Дж. Непером (1550-1617) и независимо от него швейцарским механиком и математиком И. Бюрги (1552-1632). Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620 г.), и первой в 1614 г. появилась работа Непера «Описание удивительной таблицы логарифмов». Первые таблицы десятичных логарифмов были составлены изобретательным и остроумным вычислителем, английским математиком Г. Брипсом (1561-1630). На русском языке первые логарифмические таблицы были изданы в 1703 г.
|