Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


МАГИЧЕСКИЕ И ЛАТИНСКИЕ КВАДРАТЫ

Если внимательно присмотреться к числам от 1 до 16, расположенным в клетках квадрата на рис. 1, то можно заметить следующую закономерность: сумма чисел в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же. Такой квадрат и все квадраты, обладающие аналогичным свойством, получили название магических.

170-1.jpg

Рис. 1

Задачи составления и описания магических квадратов интересовали математиков с древнейших времен. Однако полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов  не существует. На рис. 2 изображен единственный магический квадрат . Единственный в том смысле, что все остальные магические квадраты  получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.

170-2.jpg

Рис. 2

С увеличением размеров (числа клеток) квадрата быстро растет количество возможных магических квадратов. Так, например, различных магических квадратов  уже 880, а для размера  их количество приближается к четверти миллиона. Среди них есть квадраты, обладающие интересными свойствами. Например, в квадрате на рис. 3 равны между собой не только суммы чисел в строках, столбцах и диагоналях, но и суммы пятерок чисел по «разломанным» диагоналям, связанным на рисунке цветными линиями.

170-3.jpg

Рис. 3

Латинским квадратом называется квадрат  клеток, в которых написаны числа , притом так, что в каждой строке и каждом столбце встречаются все эти числа по одному разу. На рис. 4 изображены два таких латинских квадрата . Они обладают интересной особенностью: если один квадрат наложить на другой, то все пары получившихся чисел оказываются различными. Такие пары латинских квадратов называются ортогональными. Задачу отыскания ортогональных латинских квадратов впервые поставил Л. Эйлер, причем в такой занимательной формулировке: «Среди 36 офицеров поровну уланов, драгунов, гусаров, кирасиров, кавалергардов и гренадеров и, кроме того, поровну генералов, полковников, майоров, капитанов, поручиков и подпоручиков, причем каждый род войск представлен офицерами всех шести рангов. Можно ли выстроить этих офицеров в каре  так, чтобы в любой колонне и любой шеренге встречались офицеры всех рангов?»

171-2.jpg

Рис. 4

Эйлер не смог найти решения этой задачи. В 1901 г. было доказано, что такого решения не существует. В то же время Эйлер доказал, что ортогональные пары латинских квадратов существуют для всех нечетных значений  и для таких четных значений , которые делятся на 4. Решение задачи Эйлера для 25 офицеров изображено на рис. 5. Чин офицера символизирует цветной кружок в углу каждой из клеток. Здесь особенно хорошо видна связь между, задачей Эйлера и латинскими квадратами: рода войск соответствуют числам одного латинского квадрата, а чины (цветные точки) – числам ортогонального ему латинского квадрата. Эйлер выдвинул гипотезу, что для остальных значений , т.е. если число  при делении на 4 дает в остатке 2, ортогональных квадратов не существует. В 1901 г. было доказано, что ортогональных квадратов размером  не существует, и это усиливало уверенность в справедливости гипотезы Эйлера. Однако в 1959 г. с помощью ЭВМ были найдены сначала ортогональные квадраты , потом . А затем было показано, что для любого , кроме 6, существуют ортогональные квадраты размером .

172-2.jpg

Рис. 5

Гравюра А. Дюрера «Меланхолия»

«Часто воспроизводится магический квадрат, присутствующий на знаменитой гравюре А. Дюрера «Меланхолия».

Любопытно, что средние числа в последней строке изображают год 1514, в котором была создана эта гравюра». Д. Оре

171-1.jpg

Магические и латинские квадраты – близкие родственники. Пусть мы имеем два ортогональных латинских квадрата. Заполним клетки нового квадрата тех же размеров следующим образом. Поставим туда число , где  – число в такой клетке первого квадрата, а  – число в такой же клетке второго квадрата. Нетрудно понять, что в полученном квадрате суммы чисел в строках и столбцах (но не обязательно на диагоналях) будут одинаковы.

Теория латинских квадратов нашла многочисленные применения как в самой математике, так и в ее приложениях. Приведем такой пример. Пусть мы хотим испытать 4 сорта пшеницы на урожайность в данной местности, причем хотим учесть влияние степени разреженности посевов и влияние двух видов удобрений. Для этого разобьем квадратный участок земли на 16 делянок (рис. 6). Первый сорт пшеницы посадим на делянках, соответствующих нижней горизонтальной полосе, следующий сорт – на четырех делянках, соответствующих следующей полосе, и т.д. (на рисунке сорт обозначен цветом). При этом максимальная густота посевов пусть будет на тех делянках, которые соответствуют левому вертикальному столбцу рисунка, и уменьшается при переходе вправо (на рисунке этому соответствует уменьшение интенсивности цвета). Цифры же, стоящие в клетках рисунка, пусть означают: первая – количество килограммов удобрения первого вида, вносимого на этот участок, а вторая – количество вносимого удобрения второго вида. Эти числа на 1 меньше чисел в ортогональных латинских квадратах из рис. 4. Нетрудно понять, что при этом реализованы все возможные пары сочетаний как сорта, и густоты посева, так и других компонентов: сорта и удобрений первого вида, удобрений первого и второго видов, густоты и удобрений второго вида.

172-1.jpg

Рис. 6

Использование ортогональных латинских квадратов помогает учесть все возможные варианты в экспериментах в сельском хозяйстве, физике, химии, технике.

 



<< ПредыдущаяОглавлениеСледующая >>