Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


ОПРЕДЕЛИТЕЛЬ

Определитель - число, поставленное по определенным правилам в соответствие квадратной матрице.

Определителем квадратной матрицы второго порядка  называют число .

Его обозначают , или

.

Часто вместо слова «определитель» говорят «детерминант», откуда и взялось указанное обозначение.

Определитель третьего порядка определим через определители второго порядка:

Здесь первые множители в знакочередующейся сумме - числа первой строки, а вторые множители - определители матриц, полученных вычеркиванием строки и столбца, которым принадлежит первый множитель.

Порядок определителя можно увеличивать и дальше. Пусть определены определители матриц вплоть до -го порядка. Определителем матрицы -го порядка

назовем число

где вновь имеем знакочередующуюся сумму произведений, в которых один из множителей - элемент первой строки, а другой - определитель матрицы -го порядка, полученной вычеркиванием той строки и того столбца, которым принадлежит первый множитель.

Вычислим, например, определитель третьего порядка:

Определители играют важную роль в решении систем линейных уравнений.

Любопытно, что если составить из координат двух векторов  и  определитель

,

то его величина, с точностью до знака, равна площади параллелограмма, построенного на этих векторах (рис. 1), а для трех векторов в пространстве , ,  определитель

равен, опять с точностью до знака, объему параллелепипеда, построенного на этих векторах (рис. 2).

227.jpg

Рис. 1

228.jpg

Рис. 2

 



<< ПредыдущаяОглавлениеСледующая >>