13 ОСТРОВА, КЛАСТЕРЫ И ПЕРКОЛЯЦИЯ; СООТНОШЕНИЯ МЕЖДУ ДИАМЕТРОМ И КОЛИЧЕСТВОМЭта глава посвящена фрактальным Начнем с того, что перефразируем вопрос главы 5 и спросим, сколько же островов окружает берега Британии? Несомненно, их количество столь же велико, сколь и неопределенно. А если добавить к списку островов все скалы, малые скалы и просто торчащие над водой камни, то длина этого списка устремится чуть ли не к бесконечности. Поскольку поверхность Земли весьма тщательно «сморщена», полная площадь любого острова — так же, как и длина его береговой линии — географически бесконечна. Однако области, окруженные береговыми линиями, имеют вполне определенную «картографическую площадь». А то, каким образом эта картографическая площадь разделена между различными островами, является важной географической характеристикой. Можно даже утверждать, что такое «соотношение между площадью и количеством» вносит больший вклад в понимание географических форм, чем описание очертаний отдельных береговых линий. Например, если мы будем рассматривать берега Эгейского моря, нам наверняка захочется включить сюда и берега его многочисленных островов. Этот вопрос, вне всякого сомнения, заслуживает самого тщательного количественного исследования, и в этой главе мы предпримем попытку такого исследования, воспользовавшись обобщением кривой Коха. Далее мы рассмотрим разные другие фрагментированные фигуры, получаемые обобщением уже знакомых нам фракталообразующих процессов: либо процедуры Коха, либо створаживания. Эти фигуры мы будем называть контактными кластерами, причем распределение диаметров в зависимости от количества окажется для них таким же, что и для островов. Особый интерес представляют контактные кластеры, заполняющие плоскость, в частности, кластеры, образуемые некоторыми кривыми Пеано, терагоны которых не имеют точек самопересечения, но имеют несколько тщательно контролируемых точек самокасания. В саге о приручении чудовищ Пеано появляется, таким образом, новая глава! И последнее (только по порядку, а отнюдь не по значимости): в эту главу включена первая часть прецедентного исследования геометрии перколяции, весьма важного физического феномена, рассмотрение которого будет продолжено в главе 14. ОБОБЩЕНИЕ ЭМПИРИЧЕСКОГО ЗАКОНА КОРЧАКА Составим список всех островов некого региона в порядке уменьшения их размера. Общее количество островов, размер которых превышает Обозначив через
Если мы захотим приписать кому-либо честь открытия этого правила, то лучше всех, пожалуй, подходит кандидатура И. Корчака [279] (хотя, по его утверждению, КОНТИНЕНТ И ОСТРОВА КОХА. ИХ РАЗЛИЧНЫЕ РАЗМЕРНОСТИ Для построения коховского аналога канторовых пустот я разбиваю генератор на два не связанных друг с другом элемента. Чтобы получаемая фрактальная кривая оставалась интерпретируемой как береговая линия, генератор включает в себя связную ломаную, состоящую из На последующих этапах построения субострова всегда находятся у левой половины берег-генератора (при движении от 0 к 1) и остров-генератора (при движении по часовой стрелке). Первая неожиданность: предельный фрактал в этом случае характеризуется двумя различными размерностями. Собрав вместе береговые линии всех островов, получим
Суммарная береговая линия, не будучи связной, является сама по себе не кривой, а бесконечной суммой ( Заметим, что моделирование полученного соотношения между СООТНОШЕНИЕ МЕЖДУ ДИАМЕТРОМ И КОЛИЧЕСТВОМ Доказательство применимости закона Корчака к островам, рассмотренным в последнем разделе, проще всего осуществляется тогда, когда генератор включает в себя один остров, а терагоны избегают самопересечений. (Напомню, что терагонами называются аппроксимирующие ломаные линии.) В этом случае на первом этапе создается один остров — обозначим его «диаметр», определяемый
ключевым показателем в котором является фрактальная размерность береговой линии! Как следствие:
т. е. мы самостоятельно вывели закон Корчака. При других значениях Результат не зависит ни от ОБОБЩЕНИЕ ДЛЯ СЛУЧАЯ Е > 2 Применив наше построение к пространству, мы убедимся в том, что Показатель ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ ИСКЛЮЧИТЕЛЬНО КАК МЕРА ФРАГМЕНТАЦИИ Вышеописанное построение допускает следующее изменение генератора: Общая величина При измерении длины кривой шагом В общем случае Фрагментированная фрактальная кривая может иметь касательные в любой точке. Закруглив углы островов, можно добиться того, что к береговой линии в любой ее точке можно будет провести касательную, причем площади островов — а с ними и общая размерность БЕСКОНЕЧНОСТЬ ОСТРОВОВ Безвредная расходимость. При Относительная площадь наибольшего острова. Этот последний факт приемлем математически только потому, что суммарная площадь очень маленьких островов конечна и пренебрежимо мала, с Общая площадь всех островов, площадь каждого из которых меньше Следовательно, относительный вклад самого большого острова в суммарную площадь всех островов стремится к некоторому положительному пределу по мере того, как увеличивается количество островов. Он отнюдь не является асимптотически пренебрежимым. Относительная длина самой длинной береговой линии. С другой стороны, если Относительно пренебрежимые множества. В более общем виде неравенство В ПОИСКАХ БЕСКОНЕЧНОГО КОНТИНЕНТА В масштабно-инвариантной Вселенной различие между островом и континентом не может основываться на традиции или «относительном размере». Единственный разумный подход состоит в том, чтобы определить континент как особый остров бесконечного диаметра. Ниже я намерен показать, что построения, приведенные в начале главы, практически никогда не генерируют континентов. < Для тех, кто знаком с теорией вероятности: вероятность того, что такое построение даст в итоге континент, равна нулю. ► При разумном подходе к поискам континента следует отказаться от раздельного выбора инициатора и генератора. С этого момента нам придется использовать один и тот же генератор и для интерполяции, и для экстраполяции. Процесс осуществляется в несколько последовательных этапов, каждый из которых разбивается на шаги. Он очень напоминает экстраполяцию канторова множества в главе 8, однако заслуживает более подробного описания. Первый шаг укрупняет выбранный нами генератор в отношении Процесс повторяется до бесконечности, причем его течение и результат определяются последовательностью положений «помеченных» звеньев. Эта последовательность может принимать различные формы. Для получения первой формы берег-генератор должен включать в себя некоторое положительное число Вторая форма: всегда помечаем какое-либо из крайних звеньев берег-генератора, причем каждая из двух возможностей выбирается бесконечное количество раз. В этом случае исходный участок побережья также растягивается до бесконечности. Если каждый раз выбирать одно и то же звено, береговая линия будет удлиняться только в одном направлении. Чтобы получить третью форму, будем всегда помечать звено, принадлежащее остров-генератору. Тогда остров, который до экстраполяции был самым большим, окажется вблизи берегов большего острова; после следующего этапа этот больший остров окажется у берегов еще большего острова, и т. д. до бесконечности. Континента при таком построении мы не получим вовсе. В следующем замечании мы воспользуемся некоторой толикой «вероятностного здравого смысла», который, должно быть, не чужд ни одному читателю. Предположим, что помечаемое звено выбирается посредством броска КОМБИНАЦИИ ОСТРОВОВ, ОЗЕР И ДЕРЕВЬЕВ Так как острова Коха взаимоподобны, их диаметр
имеет очень широкую область применения. < Можно даже отказаться от непременного условия отсутствия пересечений терагонов, образованных двумя интервалами. ► Покажем теперь на примерах, как конфигурация Комбинация островов и озер. Ранее мы располагали остров- генератор слева и в направлении по часовой стрелке. Попробуем теперь расположить его также в направлении по часовой стрелке, но справа. В результате вместо островов мы получим озера. Кроме того, можно включить в один генератор Если инициатором служит квадрат, мы получим на некотором отдаленном этапе построения следующий терагон: Неуловимый континент. На вышеприведенном рисунке можно видеть, что длина стороны инициатора вносит не присущий генератору внешний порог. Более последовательным решением будет экстраполировать эту длину, как мы поступили в случае островов без озер. Однако и в этом случае мы можем быть почти уверены, что мы получим не континент, а лишь бесконечно вложенные друг в друга острова и озера. Соотношение между площадью и количеством. При определении площади острова (или озера) можно исходить либо из общей площади фигуры, либо из площади суши (или воды) в пределах береговой линии. Эти две величины связаны между собой постоянным коэффициентом, т. е. влияют на количество Комбинация интервалов и деревьев. Допустим теперь, что оставшиеся ПОНЯТИЕ КОНТАКТНОГО КЛАСТЕРА Генератор может также сочетать в себе петли, ветви и разные другие топологические конфигурации. Связные части предельных фракталов, получаемых при таком построении, напоминают кластеры из теории перколяции (как будет показано позже в этой главе) и из многих других областей физики. Для нас использование термина «кластер» чрезвычайно неудобно, так как совсем недавно (при рассмотрении пылевидных множеств в главе 9) мы вкладывали в него несколько иной смысл. Стало быть, необходим более точный и — как следствие — более громоздкий термин. Я решил остановиться на словосочетании «контактный кластер». Хорошо еще, что в термине «сг-кластер» нет такой двусмысленности. (Можно заметить, что контактный кластер имеет однозначное и естественное математическое определение, тогда как понятие кластеризации в пыли размыто и интуитивно и определяется, в лучшем случае, через весьма спорные статистические законы.) Контактные кластеры, заполняющие плоскость. В случае, когда размерность Неуловимый бесконечный кластер. Данный подход ни в коем случае не подразумевает возможности образования действительно бесконечного кластера. Можно легко построить топологию генератора таким образом, чтобы любая данная ограниченная область была почти наверняка окружена контактным кластером. Этот кластер, в свою очередь, почти наверняка окажется окружен большим кластером и т. д. Размер кластера сверху ничем не ограничен. В более общем виде: если кластер представляется бесконечным только потому, что он окружает очень большую область, то стоит лишь вспомнить о том, что сам он окружен кластером еще большего размера, и конечный размер любого кластера перестанет вызывать сомнения. СООТНОШЕНИЕ МЕЖДУ МАССОЙ И КОЛИЧЕСТВОМ. СООТНОШЕНИЕ МЕЖДУ ВЗВЕШЕННЫМ ДИАМЕТРОМ И КОЛИЧЕСТВОМ. ПОКАЗАТЕЛИ D-Dc И D/Dc Переформулируем функцию Массой кластера здесь называется просто количество звеньев длины Масса кластера диаметра Соотношение между массой и количеством. Очевидно, что
Распределение диаметра, наделенного массой. Заметим, что величина
МАССОВЫЙ ПОКАЗАТЕЛЬ Q=2Dc-D Обозначим фрактал размерности Мы знаем, что правило
где
Рассмотрим теперь среднее взвешенное значение
Когда центр диска находится не в точке 0, а в какой-либо другой точке фрактала Замечание. Предыдущее рассуждение никак не зависит от топологии кластеров — они могут быть петлями, интервалами, деревьями или чем-нибудь еще. Вывод. Формула Предостережение: не всякий массовый показатель является размерностью. Составная величина Обобщая, можно сказать, что во многих областях физики известны соотношения вида РАССРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ Существует еще два метода построения контактных кластеров. Первый основан на створаживании и применим в случае Начнем с замены построения Коха естественным обобщением кан- торова створаживания на плоскость. В качестве иллюстрации на нижеследующем рисунке представлены пять примеров генераторов, под которыми помещены последующие этапы построения: Во всех этих случаях предельный фрактал имеет нулевую площадь и не содержит внутренних точек. Его топология зависит от формы генератора и может быть весьма разнообразной. В случае генератора A предтворог на каждом этапе построения представляет собой связное множество, а предельный фрактал оказывается кривой — примером может служить чрезвычайной важности конструкция (называемая ковром Серпинского), которую мы подробно рассмотрим в главе 14. В случае генератора Д предтворог распадается на несвязные участки, максимальный линейный масштаб которых неуклонно уменьшается по мере того, как Генераторы Б, В и Г более интересны: здесь предтворог распадается на части, которые мы назовем предкластерами. Можно сказать, что на каждом этапе «старые» предкластеры преобразуются в более тонкие и извилистые конструкции и появляются «новые» предкластеры. Посредством тщательного выбора генераторов мы добиваемся того, что каждый новорожденный предкластер оказывается целиком заключен в одной-единственной ячейке наимельчайшей решетки предыдущего этапа построения. По контрасту с «перекрестно сосредоточенными кластерами» следующего раздела я предлагаю назвать эти кластеры «рассредоточенными». Таким образом, размерность предельных контактных кластеров имеет вид Соотношение между диаметром и количеством и другие выводы предыдущего раздела остаются в силе и в том случае, если заменить псевдо-сосиску Минковского совокупностью ячеек со стороной ПЕРЕКРЕСТНО СОСРЕДОТОЧЕННЫЕ КЛАСТЕРЫ, ПОЛУЧАЕМЫЕ ПРИ СТВОРАЖИВАНИИ Придадим генератору плоского створаживания одну из приведенных ниже форм (справа от каждого генератора показан результат следующего этапа построения): Оба случая демонстрируют массивное «перекрестное сосредоточение», т. е. каждый новорожденный предкластер соединяет в себе элементы, принадлежащие на предыдущем этапе построения нескольким ячейкам наимельчайшей решетки. В контексте кохова построения аналогичная ситуация возникает в том случае, когда допускается самокасание терагонов, в результате чего происходит слияние малых кластеров. В обоих случаях анализ довольно громоздок, и мы не можем останавливаться на нем подробно. Скажем лишь, что для малых < Если кто-нибудь все же попытается оценить величину Величина ПРИРУЧЕНИЕ ЗАУЗЛЕННЫХ ЧУДОВИЩ ПЕАНО Створаживанием нельзя получить заполняющую плоскость совокупность кластеров ( Между этими крайностями существует еще один весьма интересный класс кривых Пеано. Ниже представлен примерный генератор одной такой кривой вместе с результатом следующего этапа построения:
Теперь мы готовы приручить и этот класс кривых Пеано. На рисунке видно, что каждая точка самокасания «заузливает» открытый предкластер, который затем может обзавестись ветвями и точками самокасания, потерять при «разузливании» некоторые части самого себя и, в конце концов, превратиться в тонкую и в высшей степени разветвленную кривую, определяющую контактный кластер. Согласно нашему определению, данному в предыдущих разделах, диаметр кластера Заметим мимоходом, что в отличие от коховых контактных кластеров, которые являются пределами рекурсивно построенных кривых, данные кластеры представляют собой пределы (в своем роде) открытых компонентов дополнения кривой. КЛАСТЕРЫ В БЕРНУЛЛИЕВОЙ ПЕРКОЛЯЦИИ Какой бы метод ни использовался при генерации фрактальных контактных кластеров с размерностями Литература. Всем желающим рекомендую следующие обзорные материалы по бернуллиевой перколяции: [520], [112] (особенно хороша глава, написанная Дж. У. Эссамом), [266], [98], [536] и [134]. Определения. Понятие перколяции включает в себя некоторые элементы из теории вероятности, поэтому, если быть до конца последовательными, нам не следовало бы обсуждать его на данном этапе. Однако некоторая толика непоследовательности приносит порой неплохие результаты. Простейшей задачей о перколяции для случая Обобщение на решетки другой формы и на структуры с Критическая вероятность. Наиболее замечательная находка Хаммерсли имеет отношение к особой роли некоторой пороговой вероятности или, как он ее назвал, критической вероятности Поскольку в случае перколяции по связям на квадратных решетках дело обстоит таким образом, что либо медь, либо винил должны перколировать, то Аналитическая масштабная инвариантность. Изучение перколяции уже довольно давно вылилось в поиски аналитических выражений, которые связали бы между собой стандартные физические величины. Выяснилось, что все эти величины обладают свойством масштабной инвариантности в том смысле, что отношения между ними задаются степенными законами. При ФРАКТАЛЬНАЯ ГЕОМЕТРИЯ КЛАСТЕРОВ Форма кластеров. Допустим, что Гипотеза о фрактальных кластерах. Вполне естественно предположить, что масштабная инвариантность — свойство не только аналитическое, но распространяется и на геометрию кластеров. Однако эту идею нельзя осмыслить средствами стандартной геометрии, поскольку кластеры отнюдь не являются прямыми линиями. Фрактальная же геометрия, можно сказать, просто создана для устранения таких трудностей: как следствие, я высказал предположение, что кластеры можно представить в виде фрактальных < Строго говоря, масштабно-инвариантные фракталы были призваны представлять только те кластеры, которые не усечены границей исходной решетки. Это исключает из рассмотрения сам перколяционный кластер. (Термин кластер обладает чудесным даром создавать путаницу, вы не находите?) Для объяснения возникающего осложнения представим себе чрезвычайно большую решетку, выберем на ней какой-нибудь кластер и квадрат меньшего размера, наложенный на этот кластер. По определению, пресечение кластера и квадрата включает в себя меньший перколяционный кластер, однако оно же включает в себя и «остаток», который соединяется с меньшим перколяционным кластером посредством связей, находящихся вне квадрата. Заметим, что пренебрежение этим остатком смещает вниз оценку Неслучайные фрактальные модели — очень приближенные, но конкретные. Для того, чтобы утверждение о фрактальной природе какого-либо естественного феномена было обоснованным, его следует сопроводить описанием конкретного фрактального множества, которое могло бы послужить моделью этого явления в первом приближении или хотя бы дать нам возможность представить его перед мысленным взором. Моя модель береговых линий, основанная на кривых Коха, или модель галактических скоплений Фурнье показывают, что такое приближенное неслучайное представление может оказаться весьма полезным. Я полагаю также, что рекурсивно построенные контактные кластеры (подобные тем, что рассматриваются в этой главе) могут снабдить нас полезными фрактальными моделями слабо изученного естественного феномена, который обычно моделируется кластерами Бернулли. Однако сами кластеры Бернулли полностью изучены (по крайней мере, принципиально), и следовательно, их моделирование с помощью явных рекурсивных фракталов представляет собой несколько иную задачу. Рассмотренные мною коховы контактные кластеры для этого случая не годятся из-за асимметрии между виниловыми и медными стержнями, которая сохраняется даже при равных количествах стержней обоих видов. Далее на очереди заузленные кластеры Пеано. Возьмем терагон на некотором отдаленном этапе построения и покроем ячейки, расположенные слева от кривой, медью, а остальные — винилом. Результат представляет собой форму перколяции относительно ячеек решетки (или их центров, называемых узлами). Задача становится симметричной. Однако она отлична от задачи Бернулли, так как получаемая конфигурация медных и виниловых ячеек очень отличается от той, какой она могла бы быть при независимом их распределении: например, в бернуллиевой решетке девять ячеек, образующих суперквадрат, могут целиком состоять из меди или винила, тогда как в случае заузленной кривой Пеано это невозможно. (С другой стороны, обе модели позволяют группам из четырех ячеек, образующих суперквадрат, принимать любые возможные конфигурации.) Эта разница имеет далеко идущие последствия: например, в задаче о бернуллиевой перколяции по узлам с Перечень вариантов бернуллиевой перколяции по связям уже довольно обширен и может быть с легкостью продлен. Я же успел рассмотреть множество вариантов рекурсивно построенных фрактальных контактных кластеров. Детальное сравнение этих двух перечней, к сожалению, заняло бы слишком много места, и потому я не стану приводить его здесь. Позвольте мне ограничиться весьма расплывчатым выводом о том, что фрактальная сущность задачи о бернуллиевой перколяции в значительной степени иллюстрируется неслучайными заполняющими пространство Модель критических кластеров. Рассмотрим, в частности, критические кластеры, определяемые как кластеры при Модели некритических кластеров. Для того, чтобы распространить эту геометрическую картину на некритические кластеры, т. е. на кластеры при Докритические кластеры. Инициатор на рисунке слева (построенный с таким расчетом, чтобы Сверхкритические кластеры. Инициатор на рисунке справа (построенный так, чтобы Заметим, что фрактально-геометрическое представление выводит некритические кластеры из критических, в то время как физики предпочитают рассматривать критические кластеры как предельный случай некритических кластеров при РАЗМЕРНОСТЬ Dс КРИТИЧЕСКИХ БЕРНУЛЛИЕВЫХ КЛАСТЕРОВ Значение и Благодаря установленным физиками соотношениям между величинами Харрисон, Бишоп и Куинн [198], Киркпатрик [267] и Штауффер [536] независимо друг от друга получили одинаковое значение В случае < Смещенное экспериментальное значение КИПАРИСОВЫЕ РОЩИ ОКЕФЕНОКИ Если взглянуть с самолета на лес, за которым никто систематически не «присматривает», можно увидеть, что его граница весьма напоминает береговую линию острова. Контуры отдельных групп деревьев чрезвычайно извилисты и изрезаны, и по соседству с каждой большой группой расположены меньшие группы различного размера. Мое предположение о том, что эти формы могут подчиняться закону Ричардсона и/или/ закону Корчака, было полностью подтверждено в неопубликованном исследовании болота Окефеноки (см. [261]), предпринятом X. М. Хейстингсом, Р. Монтиччиоло и Д. вун Канноном. Наиболее изрезанными оказались контуры кипарисовых рощ (
|