Читать в оригинале

<< Предыдущая Оглавление Следующая >>


20 ФРАКТАЛЬНЫЕ АТТРАКТОРЫ И ФРАКТАЛЬНЫЕ («ХАОТИЧЕСКИЕ») ЭВОЛЮЦИИ

Эта глава имеет своей целью познакомить читателя с одной теорией, которая развивалась вне всякой связи с фрактальными множествами и все же оказалась буквально пронизана ими. Чаще всего ее называют «теорией странных аттракторов и хаотической (или стохастической) эволюции», однако в тексте главы вы, я надеюсь, найдете причины, побудившие меня дать этой теории новое имя (см. заголовок).

Для того чтобы попасть в настоящее эссе упомянутой теории, достаточно было всего лишь быть так или иначе связанной с фракталами; я же считаю оправданным посвятить ей целую главу. Первое оправдание (практическое): эта теория почти не требует какого бы то ни было особого представления, так как бóльшую часть ее основных положений можно рассматривать просто как новую интерпретацию выводов, полученных нами в главах 18 и 19.

Во-вторых, теория фрактальных аттракторов помогает – путем противопоставления – прояснить некоторые особенности фрактальной геометрии природы. В самом деле, моя работа связана, в основном, с формами, присутствующими в реальном пространстве, с формами, которые можно увидеть, пусть даже и в микроскоп; теория аттракторов же имеет дело исключительно с эволюцией во времени расположения неких точек в невидимом и абстрактном репрезентативном пространстве.

Особенно силен этот контраст оказывается в контексте турбулентности – моя первая большая тема (работу над ней я начал в 1964 г.), где я использовал ранние формы фрактальных методик и (вполне независимо от них) теорию странных аттракторов, которая вполне всерьез сочетается с изучением турбулентности в работе [505]. До сих пор эти два подхода еще не пересеклись, но ждать осталось недолго.

Тем, кто интересуется социологией науки, несомненно, покажется занимательным следующий факт: в то время как мои прецедентные исследования, связывающие математических чудовищ с реальными физическими структурами,  встречаются с ощутимым сопротивлением, чудовищные формы абстрактных аттракторов воспринимаются с завидной невозмутимостью.

Третий довод в пользу необходимости разговора о фрактальных аттракторах связан с тем, что соответствующие эволюции выглядят «хаотическими» или «стохастическими». Как станет ясно  из глав 21 и 22, многие ученые сомневаются в уместности применения случайного в науке; теперь же появляется надежда на оправдание случайности с помощью фрактальных аттракторов.

И наконец, те читатели, кто несколько глав (или пару эссе) назад согласился с моим утверждением о том, что многие из природных проявлений могут быть описаны только с помощью неких множеств, считавшихся ранее патологическими, возможно, с нетерпением ожидают перехода от «как» к «почему». Думаю, приведенные ранее описания и демонстрации дают представление о том, как легко в некоторых случаях оказывается подсластить упомянутые в предыдущих главах геометрические пилюли, чтобы их легче было проглотить. Я же хочу привить читателю вкус именно к фракталам – независимо от того, насколько горьким кажется этот вкус большинству зрелых ученых. Кроме того, я искренне убежден (и еще вернусь к этому в главе 42), что псевдообъяснение посредством подслащивания просто-напросто неинтересно. Таким образом, важность объяснения, судя по всему, сильно преувеличена, и мы будем прибегать к нему лишь в тех случаях, когда имеющееся объяснение действительно интересно – как, например, в главе 11. Вдобавок ко всему, я подозреваю, что когда фрактальные аттракторы лягут в основу фрактальной геометрии видимых естественных форм, появится много новых более детальных и убедительных объяснений.

Так как преобразования с аттракторами нелинейны, наблюдаемые фракталы, скорее всего, окажутся не самоподобными. Это замечательно: мне кажется, что использование фрактального аналога прямой для описания феноменов, управляемых нелинейными уравнениями, выглядит несколько парадоксально. Масштабно-инвариантные фракталы, хорошо объясняющие естественные феномены, могут выступать лишь как локальные приближения нелинейных фракталов.

Понятие аттрактора

Настоящая глава опирается, по большей части, на одно давнее и весьма основательно позабытое наблюдение Анри Пуанкаре: «орбиты» нелинейных динамических систем имеют свойство притягиваться к странным множествам, которые я определяю как нелинейные фракталы.

Рассмотрим для начала простейший аттрактор – точку. «Орбита», определяемая движением маленького шарика после помещения его в воронку, начинает с некоторой спиралевидной траектории, точная форма которой зависит от исходных положения и скорости шарика, однако, в конце концов, сходится к горловине воронки; если диаметр шарика превышает диаметр отверстия воронки, то он там и останется. Для нашего шарика начало горловины воронки является устойчивой точкой равновесия, или устойчивой неподвижной точкой. В рамках достаточно удобной альтернативной описательной терминологии (которую, естественно, не следует интерпретировать с антропоцентрических позиций) горловину воронки можно назвать притягивающей точкой, или аттрактором.

В физической системе устойчивыми и притягивающими могут быть также окружность или эллипс. Например, мы все полагаем (и даже пламенно надеемся – хотя никто из нас не проживет достаточно долго для того, чтобы это имело хот какое-то значение), что солнечная система устойчива, подразумевая, что если орбите Земли и суждено претерпеть какие- либо возмущения, то она, в конце концов «притянется» назад на свою теперешнюю колею.

В более общем виде, динамическую систему принято определять следующим образом: состояние системы в момент времени  представляется точкой  на прямой, в плоскости, либо в некотором более многомерном евклидовом «фазовом пространстве» , а ее эволюция между моментами и  определяется правилами, в которые величина  явным образом не входит. Любую точку в фазовом пространстве можно принять за начальное состояние  при , а за ней последует орбита, определяемая функцией  для всех .

Основное различие между такими системами заключается в геометрическом распределении значений  при больших значениях . Принято говорить, что динамическая система имеет аттрактор, если существует некое правильное подмножество  фазового пространства , обладающее следующим свойством: при почти любой начальной точке  и достаточно большом  точка  оказывается в малой  окрестности какой-либо точки, принадлежащей  .

Понятие репеллера

Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте.

Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером.

Во многих случаях аттракторы и репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в основном горизонтальную поверхность с прогибами в обоих направлениях. Предположим, что сила тяжести направлена вниз, поместим шарик на верхней стороне поверхности и обозначим притягивающий прогиб буквой , а отталкивающий – буквой . Если теперь поместить шарик на нижней стороне поверхности и предположить, что сила тяжести направлена вверх, то прогибы  и  поменяются местами. В этой главе такие обмены играют центральную роль.

Фрактальные аттракторы. «хаос»

Бóльшая часть элементарной механики имеет дело с динамическими системами, аттракторами которых являются точки, почти окружности и другие фигуры евклидовой геометрии. Однако в действительности такие фигуры представляют собой редкие исключения, и поведение большинства динамических систем несравнимо более сложно: их аттракторы и репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих разделах описываются примеры систем с дискретным временем, .

Аттрактор-пыль. Коэффициент Фейгенбаума . Простейший пример можно получить с помощью возведения в квадрат (см. главу 19). В качестве вступления рассмотрим еще одно представление канторовой пыли : , , охватываемый интервал  . Такое множество  является пределом множества , определяемого как множество точек вида . При , каждая точка множества  разделяется на две, а множество  представляет собой результат бесконечного количества таких бифуркаций.

Согласно П. Грассбергеру (источник – препринт статьи), аттрактор  отображения  при вещественных  аналогичен множеству , но с двумя различными коэффициентами подобия, одним из которых является коэффициент Фейгенбаума  (см. [144]). После бесконечного количества бифуркаций этот аттрактор превращается во фрактальную пыль  с размерностью .

«Хаос». Ни одна точка множества  за конечный промежуток времени не посещается дважды. Многие авторы описывают эволюции на фрактальных аттракторах как «хаотические».

Самоаффинные деревья. Расположив множество  в плоскости , получим дерево. Поскольку , это дерево асимптотически самоаффинно с остатком.

Комментарий. В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач.

Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными.

Самоинверсные аттракторы

Согласно главе 18, множества  в цепях Пуанкаре является как наименьшими самоинверсными, так и предельными множествами. Переформулируем последнее свойство: при произвольно выбранной начальной точке  ее преобразования под действием последовательности  инверсий подходят произвольно близко к каждой точке множества . Предположим теперь, что эта последовательность инверсий выбирается посредством отдельного процесса, независимого от настоящего и предыдущего положений точки . При довольно широком разбросе начальных условий всегда можно ожидать (и часто эти ожидания оправдываются), что результирующие последовательности положений  будут притягиваться множеством . Таким образом, огромное количество публикаций по группам, порождаемым инверсиями, можно интерпретировать в терминах динамических систем.

Обращение «времени»

Дальнейшие поиски систем с интересными фрактальными аттракторами привели меня к системам, аттракторы которых геометрически стандартны, а вот репеллеры оказываются весьма занятными. Эти два множества легко можно поменять местами, тем самым пустив время вспять, при условии, что операции динамической системы допускают существование обратных операций (орбиты не сливаются и не пересекаются), так что, зная положение точки , можно определить все  при . Однако данные конкретной системы, которые мы хотим обратить во времени, представляют собой особый случай. Их орбиты похожи на реки: в направлении вниз по склону их путь однозначно определен, вверх же по склону – каждая развилка требует особого решения.

Попытаемся, например, обратить  - преобразование , с помощью которого мы получили канторову пыль в главе 19. При  определены две различные обратные функции, и можно, пожалуй, условиться преобразовывать все  в . Аналогичным образом, две различные обратные функции имеет отображение . В обоих случаях осмысленная инверсия предполагает выбор между двумя функциями. В других примерах возможных вариантов больше. Напомню: нам нужно, чтобы выбор между ними осуществлялся посредством отдельного процесса. Эти соображения приводят нас к обобщенным динамическим системам, которые и будут описаны в следующем разделе.

Разложимые динамические системы [398]

Потребуем, чтобы одна из координат состояния  (назовем ее определяющим индексом и обозначим через ) эволюционировала независимо от состояния остальных  координат (обозначим это состояние через ), при условии, что преобразование из состояния  в состояние  будет определяться как состояние , так и индексом . В тех примерах, которые я изучил наиболее подробно, конкретное преобразование  выбирается из конечного набора, включающего в себя  различных возможностей , причем выбирается в соответствие со значением некоторой целочисленной функции . Иными словами, я рассматривал динамику произведения  - пространства на некоторое конечное индексное множество.

Вообще говоря, в примерах, стимулировавших это обобщение, последовательность  либо действительно случайна, либо ведет себя так, словно является случайной. К рассмотрению случайности мы с вами приступим только в следующей главе, однако я не думаю, что это обстоятельство может нам помешать. Гораздо серьезнее другое: динамические системы представляет собой воплощенный образчик полностью детерминированного поведения,  и поэтому просто не вправе допускать какую бы то ни было случайность! Мы, однако, можем ввести воздействие случайности, не постулируя ее явно – нам нужно лишь присвоить функции  значение какого-нибудь в достаточной степени перемешивающего эргодического процесса. Возьмем, например, иррациональное число  и сопоставим функции  целую часть числа . Здесь стоило бы сделать еще несколько заявлений, принципиально не сложных, но весьма громоздких, так что я, пожалуй, от этого воздержусь.

Роль «странных» аттракторов

Сторонники «странных» аттракторов выдвигают в свою защиту следующие два соображения. . Поскольку динамические системы со стандартными аттракторами не в состоянии объяснить турбулентность, то, может быть, ее удастся объяснить с помощью систем с аттракторами, топологически более «странными». (это напоминает мое собственное рассуждение (см. главу 11) – высказанное, кстати, совершенно независимо от приведенного – о том, что если дифференциальное уравнение не имеет стандартных особенностей, следует попытать счастья с особенностями фрактальными. . Аттракторы до смешного простых систем – таких, как  при вещественных  и  в интервале  - действительно странны и во многих отношениях характерны для более сложных и более реалистичных систем. Таким образом, топологически странные аттракторы, вне всяких сомнений, являются, скорее, правилом, нежели исключением.

«Фрактальные» или «странные»?

Все известные «странные» аттракторы представляют собой фрактальные множества. Для многих «странных» аттракторов существуют оценки размерности . Во всех случаях . Следовательно, эти аттракторы суть не что иное, как фрактальные множества. Во многих случаях размерность  «странно – аттракторных» фракталов служит мерой не иррегулярности, а того, как накладываются друг на друга гладкие кривые или поверхности – своего рода фрагментации (см. главу 13).

С. Смейл представлял свой знаменитый аттрактор, называемый соленоидом, дважды. Оригинальное определение было чисто топологическим (размерность  при этом оставалась неопределенной), пересмотренный же вариант имеет метрический характер               (см. [527], с. 57). Я, в свою очередь, предложил ввести в теорию странных аттракторов понятие размерности  и оценил в [392] значение  для этого пересмотренного варианта. Значение  для аттрактора Зальцмана – Лоренца (,  и ) было получено независимо от меня Я. Г. Синаем и М. Г. Веларде (источник – частная беседа). Это значение больше 2, но не намного, т.е. этот аттрактор определенно не является стандартной поверхностью, но близок к таковой. Мори и Фудзисака [437] подтверждают мое значение  для аттрактора Смейла и значение  для аттрактора Зальцмана – Лоренца. Они также нашли размерность  отображения Энона , которая оказалась равной 1,26. Ожидается появление многих других статей в том же духе.

Обратное утверждение. Являются ли все фрактальные аттракторы странными – вопрос семантики. Все больше авторов согласны со мной в том, что аттрактор, как правило, можно считать странным, если он фрактален. Мне такое отношение представляется вполне здравым, если учесть, что слово «странный» выступает как синоним слов «чудовищный», «патологический» и других подобных эпитетов, которыми некогда награждали отдельные фрактальные множества.

Однако прилагательному «странный» иногда придается некий особый терминологический смысл настолько, надо сказать, особый, что аттрактор Зальцмана – Лоренца характеризуется не просто как «странный», но как «странно – странный». В этом свете «странность» аттрактора связывается главным образом с нестандартными топологическими свойствами, в то время как нестандартные фрактальные свойства просто сопутствуют им в качестве «нагрузки». Замкнутая кривая с двойными точками не является в этом смысле «странной», какой бы смятой она ни была: это значит, что большинство из исследованных мною фрактальных аттракторов нельзя считать странными.

При таком определении термина «странный» рассуждения в предыдущем разделе теряют всякую привлекательность. Однако если модифицировать понятие странности с тем, чтобы оно из топологического стало фрактальным, то эту привлекательность можно вернуть. Вот почему я считаю, что победы в споре достойны те, кто определяет «странное» как «фрактальное». А поскольку они и в самом деле побеждают, я не вижу большого смысла в сохранении термина, необходимость в котором исчезла в тот момент, когда я показал, что фракталы не более странны, чем, скажем, горы или береговые линии. Кроме того, не стану скрывать: к термину «странный» я испытываю какую-то личную неприязнь.

Рис. 282 и 283. Притяжение к фракталам

Приведенные здесь фигуры иллюстрируют длинные орбиты последовательных состояний двух разложимых динамических систем. Нагрудник фараона  на рис. 283 представляет собой самоинверсное (см. главу 18) множество, основанное на четырех инверсиях, подобранных таким образом, чтобы предельное множество  являлось совокупностью окружностей. Дракон Сан-Марко на рис. 282 – самоквадрируемое (см. главу 19) множество и основан на двух инверсиях отображения .

Определяющий индекс в этих случаях выбирается из четырех (или, соответственно, двух) возможностей с помощью псевдослучайного алгоритма, примененного 64 000 раз. Несколько первых точек на рисунке опущены.

Области в окрестностях точек заострения и самопересечения заполняются чрезвычайно медленно.

 



<< Предыдущая Оглавление Следующая >>