25 БРОУНОВСКОЕ ДВИЖЕНИЕ И БРОУНОВСКИЕ ФРАКТАЛЫМесто этой главы в настоящем эссе представляет собой в некотором роде результат компромисса. Логичнее было бы поместить такую главу в следующей части, однако некоторые ее разделы являются необходимым предисловием к главе 26. Роль броуновского движения Как мы знаем из главы 2, Жану Перрену пришла однажды в голову блестящая идея сравнить физическое броуновское движение с непрерывными недифференцируемыми кривыми. Идея Перрена послужила источником вдохновения для юного Норберта Винера, примерно в 1920 г. определившего и исследовавшего математическую реализацию броуновского движения, которую и сейчас нередко называют винеровским процессом. Много позже стало известно, что тот же процесс был подробно, хотя и не так строго, рассмотрен в докторской диссертации Луи Башелье [12] (см. также главы 37 и 39). Странно, что само по себе броуновское движение – при всей своей чрезвычайной важности во многих других областях – не находит в настоящем эссе никакого нового приложения. Время от времени оно помогает вчерне набросать проблему, однако, и в этих случаях при дальнейшем ее рассмотрении оно непременно заменяется каким-либо другим процессом. И все же во многих случаях можно зайти, на удивление, далеко просто модифицируя броуновское движение; нужно только следить за тем, чтобы модификации оставались масштабно-инвариантными. По этой и иным причинам остальные случайные фракталы нельзя оценить по достоинству без досконального изучения и понимания конкретных свойств этого их прототипа. Однако миллионы страниц, посвященных данной теме, либо упоминают вскользь, либо вовсе опускают некоторые весьма важные моменты, рассмотрением которых мы и займемся в настоящей главе. Если читатель сочтет, что мы заходим слишком далеко, он – как здесь принято – вполне может перейти к следующему разделу или даже к следующей главе. Броуновские фракталы: функция и след К сожалению, термин «броуновское движение» неоднозначен. Во-первых, этим термином можно обозначить график выражения Когда неоднозначность начинает угрожать ясности моих рассуждений, я разделяю термины и говорю либо о броуновской функции, либо о броуновском следе. Мы уже сталкивались с такой неоднозначностью при рассмотрении кривых Коха, однако здесь она более очевидна благодаря термину «движение». Кроме того, переменная в броуновских функциях, рассматриваемых в главах 28 – 30, многомерна. Например, в одной из моделей земного рельефа в главе 28 предполагается, что высота точки поверхности является броуновской функцией от ее широты и долготы. Таким образом, часто возникает потребность в уточнении терминологии. При необходимости мы различаем броуновские функции и следы из прямой в прямую, из прямой в пространство, из пространства в прямую, из прямой в Броуновские «поля». «Случайное поле» есть в действительности не рандомизированное (алгебраическое) поле, а всего лишь модный синоним (см., например, [13]) для термина «случайная ф1 нескольких переменных». Синоним этот ничем не оправдан, и его следует как можно скорее изъять из обихода, пока он не успел укорениться. Возник он, судя по всему, вследствие некомпетентного перевода с русского, как и термин «автомодельный» (его распространение я, к счастью, успел вовремя пресечь), появившийся в результате бездумного перевода русского термина «самоподобный». Плоский броуновский след, построенный как случайная кривая пеано ( Изучение броуновских следов проливает свет на природу кривых Пеано – и это при том, что броуновский след, как выяснилось, представляет собой не что иное, как рандомизированный вариант кривой Пеано. Я провел небольшой опрос среди случайно выбранной группы ученых, и ни один из них не признал идентичности этих двух построений; не упоминается об этом и в случайным образом отобранной мною (и тщательно просмотренной) пачке книг, посвященных данному предмету. Математики любыми способами избегают такого подхода, поскольку основная его составляющая (иерархия слоев с возрастающей детализацией, регулируемая двоичной временнóй решеткой) никак не связана с результатом построения. Это обстоятельство, по мнению математиков, придает данному подходу искусственный и надуманный характер – однако именно благодаря этому обстоятельству он замечательно вписывается в настоящее эссе. Процесс можно начинать с любой кривой Пеано с Промежуточные фракталы – «пеано – броуновские гибриды» - заслуживают отдельного подробного изучения в более подходящей обстановке. Трансверсальное срединное смещение. В конструкциях, изображенных на рис. 98 – 102, на Обозначим смещения кривой Пеано за промежуток времени
Направления изотропных смещений. В качестве нашего первого отступления от правил построения любой кривой Пеано попробуем рандомизировать направления смещения. Один подход предполагает равную вероятность смещений вправо и влево, давая в результате этакую «случайную прыг – скок – кривую». Другой подход состоит в случайном (однородной плотности) выборе точки на окружности, размеченной в градусах, и использовании полученной таким образом угловой величины. Смещения, определяемые такой процедурой, называются изотропными. Теорема Пифагора применима к любому из упомянутых способов рандомизации: приращения изотропного движения на двоичных подынтервалах двоичного же интервала геометрически ортогональны. Длины случайных смещений. Второе отступление от правил неслучайного построения: рандомизации подвергается и длина смещения. Начиная с настоящего момента, под величиной
Случайный инициатор. Следующим шагом будет использование в построении случайного инициатора, среднеквадратическая длина которого равна 1. Отсюда неизбежно следует, что
Иными словами, геометрически ортогональные отрезки заменяются отрезками, которые в теории вероятности называются статистически ортогональными или некоррелированными. Независимые приращения. Срединные смещения можно теперь считать статистически независимыми, как внутри каждого отдельного этапа, так и между этапами. Гауссовы приращения. Рандомизированная кривая Пеано становится броуновским следом Обобщение на пространство. Окончательное построение имеет смысл и при Размерность Броуновские фрактальные сети (решетки) Множественные самопересечения. Даже если остановить рандомизацию после первого же этапа, описанного в предыдущем разделе процесса, она успевает полностью нарушить идеальные дальний и ближний порядки, благодаря которым кривые Пеано избегают самопересечений. Рандомизированные терагоны самопересекаются уже на начальных этапах построения, а предельный след почти, наверное, содержит бесконечное количество самопересечений. Броуновские пустоты. Общеизвестно, что броуновский след, экстраполированный для всех значений Очевидно, в качестве компенсации за те точки, которые броуновский след В главе 14 описана сеть с размерностью Нулевая площадь броуновской сети. Несмотря на размерность броуновской сети Неограниченный след плотен в плоскости. Это свойство основывается на том факте (который мы установим несколько позже, когда будем говорить о нуль - множествах), что неограниченный след бесконечно часто «возвращается» в любую заданную плоскую область Однако – в чем мы убедимся при рассмотрении тех же нуль – множеств – вероятность того, что некий конкретный след точно попадет в некую заданную точку, равна нулю, т.е. заданная точка почти наверняка оказывается не затронутой неограниченным следом. Часть неограниченного следа, заключенную внутри области Зависимость массы от радиуса Величина Определив величину, пропорциональную времени, затраченному броуновским следом на прохождение того или иного своего участка, как «массу», а затем «взвесив» эти самые участки, мы обнаружим, что – как в плоскости, так и в пространстве Формально это соотношение полностью идентично тому, что мы получили для кривых Коха (глава 6) или канторовой пыли (глава 8). И тем более идентично соотношению для классических случаев интервала, диска или шара однородной плотности. Броуновский след: отсутствие «складок» и стационарные приращения Рандомизировав кривую Пеано, мы нежданно - негаданно получили гораздо больше, чем предполагали. В качестве предваряющего комментария заметим, что в моменты времени вида Броуновский же след лишен таких «складок». Имея перед глазами броуновский след на некотором интервале времени Это свойство заслуживает внимания по двум причинам: во-первых, на нем основывается альтернативное, «безрешеточное», определение броуновского движения, данное несколько дальше в этой же главе, а во-вторых, оно не имеет соответствий среди свойств аналогичных рандомизированных форм простых фрактальных кривых и поверхностей. Броуновский след: самоподобие Из отсутствия складок вытекает весьма сильная форма статистического самоподобия. Положим Самоподобие в приложении к случайным множествам – понятие не столь строгое, как то, с которым мы познакомились в главе 5, так как здесь части не обязательно должны быть в точности подобны целому. Достаточно того, что части и уменьшенное в масштабе целое имеют одинаковые распределения. Заметим, что кривые Коха допускают только коэффициенты подобия вида Броуновское нуль – множество самоподобно . . . Особое значение для изучения броуновских функций имеют множества постоянства, или изомножества, координаты функций Изомножества самоподобны; их очевидная чрезвычайная разреженность подтверждается и их фрактальной размерностью Распределение пустот в броуновских нуль – множествах. Длины пустот броуновского нуль – множества удовлетворяют соотношению А броуновская функция всего лишь самоаффинна Что же касается графиков функций Более того, аффинные пространства таковы, что расстояния вдоль оси С другой стороны, к ним применимо определение Хаусдорфа – Безиковича. Это вполне согласуется с высказанным в главах 5 и 6 утверждение о том, что определение размерности Хаусдорфа – Безиковича представляет собой наиболее общий – и наиболее громоздкий! – способ интуитивного постижения содержания понятия фрактальной размерности. Значение Набросок доказательства. На протяжении временнóго промежутка Фрактальные размерности сечений Нуль – множество броуновской функции из прямой в прямую представляет собой горизонтальное сечение броуновской функции Рассуждая аналогичным образом, находим размерность линейного сечения броуновского следа из прямой в плоскость: В более общем виде стандартное правило можно сформулировать следующим образом: если не считать особых конфигураций, коразмерности Правило сложения коразмерностей можно использовать для доказательства следующего утверждения (некоторое время назад мы уже говорили об этом): броуновское движение почти наверное не возвращается в свою начальную точку В моменты возвращения А теперь рассмотрим множество моментов времени, когда Случайные блуждания на частой решетке Можно генерировать броуновское движение и случайным блужданием на решетке. Здесь мы только упомянем о возможности такого подхода; более подробное обсуждение, ввиду наличия в нем некоторых сложностей, отложим до главы 36. Мы говорим, что точка Если решетка состоит из точек плоскости, координаты которых – целые числа, то величины Рис. 338 Выборочное случайное блуждание как приближение броуновской функции из прямой в прямую (размерность Самая долгая (и самая простая!) из всех азартных игр началась приблизительно в 1700 г., когда в теории вероятности еще заправляла семья Бернулли. Если наша неизменно симметричная монета падает орлом вверх, то пенни выигрывает Генри, если же выпадает решка, пенни достается Томасу. (На самом деле их звали Петер и Пауль, но я так и не смог запомнить, который из них ставил на орла.) Некоторое время назад понаблюдать за игрой заходил Уильям Феллер; результаты своих наблюдений он обобщил в виде графика зависимости совокупного выигрыша Генри от количества бросков монеты, каковой график вы можете видеть на рисунке вверху. (Воспроизводится по книге Феллера «Введение в теорию вероятности и ее приложения» (т.1) с любезного разрешения ее издателей, компании J, Wiley & Sons © 1950.) Средний и нижний рисунки представляют совокупный выигрыш Генри за более продолжительную игру; данные снимаются через каждые 20 бросков. Увеличивая длину наборов данных и уменьшая длину шага, асимптотически получаем выборку значений броуновской функции из прямой в прямую На одной из своих лекций Феллер сообщил, что данные рисунки «нетипичны» и были выбраны среди нескольких других, графики на которых выглядели неправдоподобно разбросанно. Как бы то ни было, бесконечное (так мне казалось) созерцание этих графиков сыграло решающую роль в развитии двух теорий, включенных в настоящее эссе. О графике в целом. В [342] имеется высказывание в том смысле, что форма всего графика целиком напоминает силуэт горного массива или вертикальный разрез земной коры. Пройдя через несколько обобщений, это наблюдение привело, в конце концов, к нескольким моделям, описанным в главе 28. Нуль – множество графика. Нуль – множество графика есть множество моментов, когда кошельки Генри и Томаса возвращаются к тому состоянию, в котором они пребывали в момент начала наблюдения. По способу построения графика временные интервалы между нулями взаимно независимы. Однако совершенно очевидно, что положения этих нулей независимыми назвать никак нельзя – они образуют весьма явственные скопления. Например, если рассматривать вторую кривую в том же масштабе, что и первую, то почти каждый нуль предстает в виде целого скопления точек. Имея дело с математическим броуновским движением, эти скопления можно подразделять иерархически до бесконечности. Когда ко мне обратились за помощью в построении модели распределения ошибок в телефонных линиях, я очень кстати вспомнил о графиках Феллера. Хотя было известно, что ошибки группируются в пакеты (в этом, собственно, и состояла практическая суть возникшей проблемы), я предположил, что интервалы между пакетами могут оказаться взаимно независимыми. Тщательное эмпирическое исследование подтвердило мое предположение и привело к созданию моделей, описанных в главах 8 и 31. Броуновское нуль – множество образует простейшую пыль Леви, т.е. случайную канторову пыль с размерностью Рис. 340 и 341. Броуновские оболочки / острова; Броуновское движение без самопересечений Броуновская петля. Под этим термином я подразумеваю след, покрываемый за некоторое конечное время Рис. 341. Броуновская оболочка. Будучи (почти наверное) ограниченной, броуновская петля разбивает плоскость на две области: внешнюю, любая точка которой может быть соединена с некой отдаленной точкой без пересечения петли, и внутреннюю, которую я предлагаю называть броуновской оболочкой или броуновским островом. Рис. 340. На этом рисунке представлена оболочка броуновского следа, не образующего петли. Комментарий. Я не знаю, проводил ли кто-нибудь исследование броуновских оболочек, но полагаю, что они заслуживают самого пристального внимания. Образцы, изображенные справа, являются результатом 200 000 броуновских шагов, каждый из которых построен на растре По способу построения броуновские оболочки, соответствующие различным значениям Броуновское движение без самопересечений. По причинам, подробно изложенным в главе 36, где мы рассмотрим случайное блуждание без самопересечений, я предлагаю для обозначения границы броуновской оболочки термин броуновское движение без самопересечений. Размерность броуновского движения без самопересечений. Интерпретировав некоторые известные соотношения (они приведены в главе 36) в том смысле, что размерность случайного блуждания без самопересечений составляет Эмпирическая проверка этого предположения дает замечательную возможность проверить заодно и соотношение между длиной и площадью, полученное в главе 12. Плоскость покрывается квадратными решетками (с каждым разом все более частыми), а мы считаем количество квадратов со стороной Сходство между кривыми на рис. 341 и 325 – и между их размерностями – также заслуживает упоминания. Замечание. Наибольшие открытые области на рис. 341, которую Возникает вопрос: чем же является петля с точки зрения степени ветвления – салфеткой или ковром? Я предполагаю, что верно последнее, так как броуновские сети удовлетворяют свойству Уайберна, описанному на с. 201 (пока неопубликованной). Следовательно, броуновский след также можно считать универсальной кривой в смысле, определенном на с. 209. Прямые, «безрешеточные», определения броуновского движения Предыдущие определения броуновского движения основывались либо на временнóй решетке, либо и на временнóй, и на пространственной, однако в окончательном результате эти «подпорки» никак себя не проявляют. Я полагаю, что и при описании этого самого результата вполне возможно обойтись без них. В прямом описании Башелье [12] постулируется, что на некоторой произвольной последовательности равных приращений времени
Следовательно, среднеквадратическое значение Определение, полюбившееся математикам, идет дальше и обходится без разделения времени на равные промежутки. Оно требует изотропии движений между любой парой моментов времени Дрейф и переход к Движение коллоидной частицы в однородно текущей реке или электрона в медном проводнике можно представить как Альтернативные случайные кривые пеано Рандомизация кривых Пеано через срединное смещение проходит так гладко только благодаря исключительным обстоятельствам. Аналогичные конструкции, имеющие в своей основе кривую Пеано с Размерность траекторий частиц в квантовой механике В качестве достойного завершения этого обсуждения можно упомянуть об одной фрактальной морщине, появившейся недавно на лике квантовой механики. Фейнман и Хиббс [150] отмечают, что типичная траектория квантовомеханической частицы непрерывна и недифференцируема; кроме того, многие авторы усматривают явное сходство между броуновским и квантовомеханическим движениями (см., например, статью [441] и список литературы к ней). Вдохновившись этими параллелями и моими первыми эссе, Эббот и Уайз [2] показали, что наблюдаемая траектория частицы в квантовой механике представляет собой фрактальную кривую с размерностью
|