30 ИЗОТЕРМИЧЕСКИЕ ПОВЕРХНОСТИ ОДНОРОДНОЙ ТУРБУЛЕНТНОСТИКульминацией настоящей главы станет объяснение иллюстраций 25 и 26, а ее главной темой – дробные броуновские функции от трех переменных с антиперсистентным показателем Изоповерхности скалярных величин при турбулентности Когда жидкость турбулентна, изотермальная поверхность, где температура в точности равна, скажем, В голову приходит приведенная во второй главе цитата из Перрена, описывающая форму коллоидных чешуек, которые образуются при добавлении соли в раствор мыла. Сходство между этими двумя явлениями вполне может выйти за пределы простых геометрических аналогий. Может оказаться так, что чешуйка заполняет зону, в которой концентрация мыла превышает некоторый порог; кроме того, эта концентрация может выступать в качестве инертного индикатора очень развитой турбулентности. Как бы то ни было, исходя из аналогии с коллоидными чешуйками, можно предположить, что изотермальные поверхности представляют собой поверхности, близкие к фрактальным. Неплохо было бы выяснить, в самом деле это так, и – если так, то оценить их фрактальную размерность. Для этого нам необходимо знать, как распределяются температурные изменения в жидкости. Коррзин [87], как и многие другие, сводит эту задачу к классической задаче, которой занимались в 40-х гг. Колмогоров и его коллеги. В некотором смысле эти исследователи блестяще справились с поставленной задачей; с другой стороны, можно сказать, что их постигла неудача. Для неспециалистов я привожу ниже краткий обзор упомянутых классических результатов. Дельта – дисперсия бюргерса Дельта – дисперсия величины Точной математической моделью функции Бюргерса является функция Пуассона, которая строится из бесконечно большого набора скачков направления движения, величин сдвига и интенсивности, задаваемых тремя бесконечными последовательностями взаимно независимых случайных величин. Что-то напоминает, не правда ли? Если не считать добавления переменной Дельта – дисперсия колмогорова В качестве модели турбулентности дельта – дисперсия Бюргерса не выдерживает никакой критики, причем самым убийственным из ее недостатков является то, что она не соответствует действительности с точки зрения анализа размерностей. Согласно выдержанной в размерностном духе аргументации, выдвинутой Колмогоровым (а также, одновременно с ним, Обуховым, Онсагером и фон Вайцзекером), возможны только два варианта: либо дельта – дисперсия универсальна, т.е. одинакова независимо от условий эксперимента, либо в ней нет никакого смысла. Для того чтобы быть универсальной, дельта – дисперсия должна быть пропорциональна После первоначальных сомнений было установлено, что колмогоровская дельта – дисперсия удивительно хорошо объясняет турбулентность в океане, атмосфере и других больших объемах. (см. [174].) Это подтверждение знаменует собой триумфальную победу абстрактного априорного мышления над беспорядочностью сырых данных. Такая победа, несомненно, заслуживает (невзирая на многочисленные оговорки, к которым мы в главе 10 добавили несколько своих) того, чтобы о ней знал не только узкий круг специалистов. Гауссова функция с колмогоровской дельта – дисперсией также выглядит подозрительно знакомой. В настоящем контексте, относящемся к скалярной (одномерной) температуре, эта гауссова функция представляет собой дробную броуновскую функцию из З – пространства в прямую с параметром В однородной турбулентности изоповерхности фрактальны [380] Несмотря на свой триумф в предсказании равенства Подобные негативные результаты, конечно, вызывают некоторые неудобства, однако редко кто отказывается от удобного во всех остальных отношениях допущения по столь незначительным причинам. В лучшем случае исследователи турбулентности просто ведут себя более осторожно при работе с гауссовой моделью: если (и когда) результаты вычислений оказываются логически невозможными, значит, модель неприемлема, если же все в порядке, то движемся дальше. В работе [380] – тут мы возвращаемся к температуре – я сочетаю гауссово допущение с дельта – дисперсиями Бюргерса и Колмогорова. Можно, очевидно, надеяться, что выводы останутся верными и без учета гауссова допущения, поскольку они основываются не только на непрерывности и самоподобии. В четырехмерном пространстве координат Линейные сечения. Изотерма при фиксированных Плоские сечения. При фиксированных Пространственные сечения. При фиксированном Объяснение иллюстраций 25 и 26 При фиксированном Такие поверхности представлены на рис. 26, тайну происхождения которого можно, наконец, объяснить. Для контраста на рис. 25 изображена изоповерхность персистентной функции
|