X СЛУЧАЙНЫЕ ТРЕМЫ. ТЕКСТУРА31 ТРЕМЫ В ИНТЕРВАЛЕ. ЛИНЕЙНАЯ ПЫЛЬ ЛЕВИСтруктура этой группы глав несколько запутана. Понятия случайных трем и текстуры сойдутся вместе только в главе 35, где будет показано, как можно управлять текстурой. В главе 34 понятие текстуры вводится вне особой связи с тремами; здесь описаны факты, которые можно было бы разбросать по нескольким предыдущим главам, однако ради сохранения целостности рассмотрения я предпочел собрать их в одном месте. Что касается глав 31 – 33, то текстура в них совсем не упоминается, а тремы активно используются для построения случайных фракталов, многие из которых встретятся нам впервые. Новые фракталы (как и те, что рассматривались в предыдущих – броуновских – главах) свободны от временных и/или/ пространственных решеток. В настоящей главе мы поговорим о случайных пылевидных множествах, ограниченных прямой, и попытаемся применить их к решению проблемы шума, с которой мы впервые столкнулись в главе 8, а также подготовим почву для их обобщения на плоскость и пространство; различные варианты такого обобщения будут описаны дальше, в главах 32 и 33. Главная практическая цель глав 32, 33 и 35 – внести вклад в построение модели скоплений галактик; впервые возможности решения этой проблемы мы обсуждали в главе 9. Условно стационарные ошибки [21] В главе 8 мы с восторгом обнаружили, что канторова пыль представляет собой вполне приемлемую модель главных характерных особенностей некоторых избыточных шумов в первом приближении. Однако мы даже не попытались проверить действительное соответствие модели реальным данным. Причина, очевидно, заключается в том, что мы заранее знали – никакого соответствия здесь нет и в помине. Канторова пыль слишком правильна для того, чтобы служить точной моделью любого из известных мне естественных иррегулярных феноменов. В частности, коэффициенты самоподобия канторовой пыли ограничены величинами вида Иррегулярность можно легко привнести – для этого существует рандомизация. Что касается инвариантности при сдвигах, то от нашей искомой замены канторову множеству потребуется лишь инвариантность в статистическом смысле. В рамках вероятностной терминологии это означает, что множество должно быть стационарным или, по меньшей мере, удовлетворять некоторому подходящим образом смягченному условию стационарности. В главе 23 было предложено весьма простое средство для частичного достижения этой цели. В настоящей главе мы продвинемся еще на три шага вперед. Первый шаг можно позаимствовать из самой ранней реалистичной модели перемежаемости. В работе [21] мы начали с некоторого конечного приближения пыли с порогами В результате получаем рандомизированную канторову пыль с
Соответствие этой модели действительности оказалось на удивление хорошим: немецкие государственные телефонные линии показали Длительности последовательных пустот в нашей с Берегером модели независимы; следовательно, ошибки представляют собой то, что в теории вероятности называется «процессом восстановления» или «возвратным процессом» (см. [147]). Каждая ошибка – это точка возврата, где прошлое и будущее статистически независимы друг от друга и следуют одинаковым для всех ошибок правилам. Линейная пыль леви К сожалению, множество, полученное перемешиванием пустот усеченной канторовой пыли (и сглаживанием их распределения), также не избавлено от недостатков: В [347], воспользовавшись множеством, предложенным Полем Леви, я построил усовершенствованный вариант искомого множества, лишенный недостатков (а) и (б). Позвольте мне назвать такое множество пылью Леви. При заданном значении Оказывается, нуль – множество броуновского движения (глава 25) представляет собой пыль Леви с К сожалению, метод, использованный Леви при введении своего множества, сохраняет вышеупомянутые недостатки (в) и (г). К тому же, он весьма деликатен в формальном смысле: требуется, чтобы значение К счастью, от этих трудностей легко избавиться, приняв более естественный способ построения «трем», предложенный в [371]. Действительные и виртуальные тремы Предварительное замечание: я утверждаю, что было бы очень полезно описать исходную канторову пыль с помощью сочетания «действительных» и «виртуальных» трем. Начинаем – как обычно – с интервала Тремы в интервале и соответствующие пустоты [371] В работе [371] я рандомизировал канторово построение путем сглаживания ступеней распределения и выбором расположения трем и их длин случайным образом, независимо друг от друга. Наконец, для реализации пропорциональности Будучи независимыми, тремы могут пересекаться, чем они и занимаются с большим удовольствием: вероятность того, что какую-либо трему ни разу не пересечет другая трема, равна нулю. Иными словами, понятия тремы и пустоты (или паузы) больше не совпадают: термином пустота мы теперь обозначаем интервалы, образованные перекрывающимися тремами. Возникает вопрос: сливаются ли все тремы, в конце концов, в одну гигантскую пустоту, или в интервале остаются непокрытые ими точки? Мы сначала объявим ответ, а затем, в следующем разделе, обоснуем его с помощью наглядного рассуждения на примере процесса рождения и покажем, что непокрытые точки образуют невынужденные кластеры. Рассмотрим интервал, не покрытый полностью тремами с длиной больше Даже в пределе существует некоторая положительная вероятность, что какой-то участок («трема – фрактал») останется непокрытым. В [371] доказывается, что этот трема – фрактал представляет собой не что иное, как пыль Леви с размерностью Короче говоря, Процесс рожения и невынужденная кластеризация в пыли леви При построении, описанном в главе 8, канторовы ошибки поступают иерархическими пакетами или «кластерами», причем интенсивность кластеризации находится в соответствии с показателем Напротив, доказательство того же результата для пыли со случайными тремами является очень простым и представляет подлинный интерес. Суть, опять же, заключается в том, чтобы начать с трем, длина которых несколько больше порога Эволюция этих кластеров при Среднее количество ошибок согласно модели бергера – мандельброта Это техническое отступление призвано показать, что основные результаты, касающиеся распределения ошибок в модели, основанной на канторовой пыли, остаются истинными и после рандомизации. Более того, в этом случае рассуждения и выводы значительно упрощаются, особенно если принять Предположим, что в интервале
Самоподобие же подразумевает, что
где
Объединив два последних равенства, получим
Таким образом, для того, чтобы показать, что
вполне достаточно просто объединить условную стационарность с самоподобием. В данной конкретной модели
являются случайными величинами, зависящими от В отличие от условной вероятности, абсолютная вероятность обусловливающего события
Поскольку последнее выражение можно вывести из выражения, приведенного в предыдущем абзаце, просто заменив Предыдущее рассуждение можно рассматривать как дополнение обсуждению условного космографического принципа в главе 22. Рис. 398. Улицы, проложенные случайным образом Как уже указывалось в главе 8, канторову пыль, к большому нашему сожалении, очень сложно изобразить непосредственно. Однако мы можем представить ее себе опосредованно, в виде пересечения троичной кривой Коха с ее основанием. Аналогичным образом можно опосредованно представить пыль Леви, На иллюстрации показаны черные полосы, напоминающие улицы и расположенные случайным образом; что особенно важно, их направления изотропны. Ширина «улиц» следует гиперболическому распределению и очень быстро уменьшается настолько, что их становится невозможно изобразить на рисунке. Площадь остаточного множества (участки белого цвета, или «кварталы») асимптотически приближается к нулю, а размерность Пока остаточные кварталы имеют размерность В главе 33 имеется более удачная иллюстрация. В случае, когда вычитаемые из плоскости тремы представляет собой случайным образом расположенные диски случайного размера, как показано на рис. 424 – 427, пересечения трема – фракталов с прямыми суть не что иное, как пыль Леви. Рис. 399 и 400. Дьявольские лестницы поля Леви (размерность Эти графики представляют собой рандомизированные аналоги функции Кантора (иначе – чертовой лестницы) с рис. 125. Размерность наибольшей из этих лестниц Леви равна размерности Канторова оригинала; размерности двух оставшихся лестниц либо намного меньше, либо намного больше. Для того чтобы построить лестницу Леви, рассмотрим абсциссу как функцию от ординаты. На первом этапе будем увеличивать абсциссу на некоторую случайную величину согласно распределению
|