38 МАСШТАБНАЯ ИНВАРИАНТНОСТЬ И СТЕПЕННЫЕ ЗАКОНЫ БЕЗ ГЕОМЕТРИИЕсли когда-либо будут написаны монографии или даже учебники по фракталам, то их авторы, вероятно, поместят главы, посвященные рассмотрению случайных геометрических фигур (весьма деликатный в математическом смысле предмет), после более простых глав, описывающих случайные функции, а начинаться эти книги будут, конечно же, со случайных величин. В настоящем эссе мы поступили иначе, сразу окунувшись с головой в наиболее сложную тему, поскольку тема эта представляет наибольший интерес и дает наибольший простор для развития геометрической интуиции. Ближайшие родственники фракталов – гиперболические распределения вероятностей. В предыдущих главах мы встречали немало примеров их применения, начиная с гиперболических функций Приводимый здесь пример из лингвистики составлял тему моей первой статьи (см. главу 42). Благодаря ему я познакомился с некоторыми полезными приемами – весьма прямолинейными, но в то же время достаточно универсальными. У этого лингвистического примера имеется также и термодинамический аспект, связанный с моим недавним открытием математического аналога отрицательной температуры. О гиперболических распределениях Согласно определению, которое хорошо нам известно, случайная величина (с. в.) Еще одна знакомая история: из гиперболического распределения следуют прямые условные распределения. Например, условная с. в.
Парадоксы ожидания При
Это выражение открывает широкий простор для бесчисленных парадоксальных историй. Ниже приведено несколько таких историй; особенно я рекомендую их тем из моих читателей, кто полагает себя трезвомыслящим – только не очень спешите. Эффект Линди. Будущее карьерное ожидание телевизионного комика пропорционально суммарному времени его выступлений в прошлом. Источник: газета «The New Republic» от 13 июня 1964 г. Ключ ищите в следующей истории. Притча о кладбище юных поэтов. В самой унылой части кладбища, там, где покоятся поэты и мыслители, кои скоропостижно скончались в самом расцвете своей юности, каждый памятник увенчан символом потери: половиной книги, огрызком пера или обломком какого – либо инструмента. Старый смотритель кладбища, и сам в юные годы не чуждый поэзии и учености, неустанно повторяет всем посетителям, что эти надгробные символы следует воспринимать не иначе, как совершенно буквально: «Всякий, кто здесь лежит, - заявляет он, - достиг достаточных успехов и много обещал в будущем; и размеры некоторых памятников отражают величие достижений тех, над чьими останками они возвышаются. Но как же нам оценить обманутые ожидания? Кое-кто из моих подопечных, останься он в живых, смог бы превзойти самих Леонарда Эйлера и Виктора Гюго – пусть не в гении, но хотя бы в плодовитости. Однако большинство из них, увы, оказались бы вскоре покинутыми своими музами. Поскольку в юности достижения и обещания в точности равны между собой, нам дóлжно полагать их равными и в момент скоропостижной кончины». Ключ. Всякий, кто прекращает свою деятельность в молодости, останавливает на полпути многообещающую карьеру. «Доказательство». Согласно А. Лотке, распределение количества научных публикаций одного автора является гиперболическим с показателем Комментарии. Единственный способ избежать всеобщего разочарования состоит в прекращении трудов в столь пожилом возрасте, чтобы при обсчете ожидаемого будущего ожидающим пришлось бы учитывать поправки на возраст. Коэффициент пропорциональности в эффекте Линди равен, разумеется, единице. Притча об удаляющемся береге. Далеко – далеко отсюда расположен край под названием Земля Десяти Тысяч Озер. Озера эти имеют очень простые названия: Великое, Второе – По – Величине, …, Ключ. Вышеописанное распределение диаметров озер представляет собой вариант распределения Корчака, с которым мы встречались в главах 12 и 30. Масштабно-инвариантные распределения вероятностей Вернемся, однако, к более серьезным вещам. Для того чтобы получить возможность говорить о масштабно-инвариантных случайных величинах, следует определить термин «масштабно-инвариантный» без привлечения геометрии. Дело в том, что единственной геометрической фигурой, которую можно поставить в соответствие случайной величине, является точка, а точка на части не делится. В качестве приемлемой замены можно предложить следующий вариант: будем говорить, что случайная величина Термин «преобразование» понимается здесь в широком смысле: например, сумма двух независимых реализаций случайной величины Асимптотический скейлинг. Асимптотически гиперболические С. В. К счастью, приведенное выше определение вовсе не является столь неопределенным, как может показаться на первый взгляд. При многих преобразованиях, как выясняется, для инвариантности требуется асимптотически гиперболическое распределение. Это означает, что должен существовать некоторый показатель
определены и конечны, причем один из них положителен. Распределение Парето. Термин «асимптотически гиперболическое распределение» можно рассматривать как синоним термина, хорошо знакомого статистикам-экономистам, а именно: распределение Парето. Вильфредо Парето – итальянский экономист, который пытался перевести законы механического равновесия в термины равновесия экономического, однако более прочно его имя запомнят, вероятнее всего, в связи с открытием им фундаментальной статистической закономерности: он обнаружил, что в определенных обществах количество индивидуумов с личным доходом «Новые методы статистической экономики» [342] Гиперболические законы, аналогичные распределению Парето, были позднее обнаружены во многих отраслях экономики, а на объяснение их столь широкой распространенности потрачены немалые усилия. Однако позвольте мне прежде описать один еретический подход к этой задаче. В такой области, как экономика, ни в коем случае нельзя забывать о том, что «данные», которыми нам приходится оперировать, представляет собой весьма разнородную смесь. Поэтому распределение данных является результатом совместного действия базового фиксированного «истинного распределения» и в высшей степени изменчивого «фильтра». В [342] я отмечаю, что асимптотически гиперболические распределения с Закон словарной частотности ципфа Слово есть не что иное, как последовательность «правильных» букв, заканчивающаяся «неправильной» буквой, называемой пробелом. Возьмем образец речи некого индивидуума и расположим в ряд содержащиеся в этом образце слова по следующему принципу: на первое место поставим слово, встретившееся в тексте наибольшее количество раз, далее – второе по частоте употребления и т.д., причем слова с одинаковой частотой будем располагать в произвольном порядке. В такой классификации Можно ожидать, что это соотношение подвержено самым беспорядочным изменениям, находящимся в зависимости от языка и индивидуальных особенностей оратора, однако в действительности это не так. Эмпирический закон, обнаруженный Ципфом [615] (о Дж. К. Ципфе смотрите очерк в главе 40), гласит, что соотношение между
А во втором приближении, которое я получил теоретически (тщетно пытаясь теоретически же вывести беспараметрический закон
Поскольку В совокупности эти параметры служат мерой того, насколько богат словарный запас данного индивидуума. Основным параметром является показатель Почему вышеописанному закону присуща такая универсальность? Учитывая, что он почти идеально гиперболичен, и принимая во внимание все то, что мы уже успели узнать из настоящего эссе, в высшей степени разумным будет попробовать соотнести закон Ципфа с неким лежащим в его основе скейлинговым свойством. (В 1950 г., когда я впервые столкнулся с этой задачей, такая процедура вовсе не казалась столь очевидной.) Как можно заключить из обозначения, показатель здесь играет свою обычную роль – роль размерности. Вторым параметром является префактор Лексикографические деревья В данном случае и впрямь имеется «объект», который можно подвергать преобразованию подобия: назовем этот объект лексикографическим деревом. Прежде всего, определим его и опишем, что в данном контексте имеется в виду под преобразованием подобия. Затем докажем, что в случае масштабной инвариантности лексикографического дерева частотность слов следует приведенному выше двухпараметрическому закону. Далее мы обсудим справедливость объяснения и особо остановимся на интерпретации показателя Деревья. Лексикографическое дерево имеет Масштабно-инвариантные деревья. Дерево можно назвать масштабно-инвариантным, если каждая взятая в отдельности ветвь представляет собой в некотором роде уменьшенную копию всего дерева. Усечение такого дерева означает, почти буквально, отсечение от него какой-либо ветви. Отсюда выводим наше первое заключение – ветвление масштабно-инвариантного дерева не должно иметь каких-либо пределов. В частности, неразумно – хотя на неподготовленный взгляд это совсем не очевидно – пытаться измерить богатство словарного запаса исчислением общего количества различных слов. (Почти каждый из нас «знает» настолько больше слов, чем употребляет в речи, что словарный запас среднего человека практически бесконечен.) Далее можно определить (соответствующее рассуждение мы опустим) вид, какой принимает вероятность Получение обобщенного закона Ципфа в простейшем случае. [323, 350, 358]. Простейшее масштабно-инвариантное дерево соответствует повествованию, которое представляет собой последовательность статистически независимых букв, причем вероятность употребления каждой правильной буквы составляет
а величина (исключая саму границу) и границей (включая границу). Записав
и подставив в каждое граничное выражение
получим
Искомый результат находим, аппроксимируя Обобщение. Можно построить и более сложные масштабно-инвариантные деревья, соответствующие последовательностям букв, порождаемым стационарными случайными процессами (марковскими цепями, например) и разделенными впоследствии пробелами на слова. Рассуждение становится более сложным [326], однако результат остается неизменным. Обратное утверждение. Следует ли из данных Ципфа, что лексикографическое дерево, построенное из обычных букв, является масштабно-инвариантным? Разумеется, нет: многие короткие последовательности никогда не встречаются в языке, в то же время многие длинные последовательности употребляются довольно широко. Следовательно, реальные лексикографические деревья далеки от строгой масштабной инвариантности, однако вышеприведенное рассуждение, по сути, достаточно хорошо объясняет, почему выполняется обобщенный закон Ципфа. Можно также упомянуть и о том, что закон Ципфа первоначально рассматривался как весьма многообещающий вклад в лингвистику – впрочем, как показывает мое объяснение, с лингвистической точки зрения закон этот очень поверхностен. Обобщенный закон Ципфа также выполняется внутри определенных ограниченных словарных составов. Например, специалисты в области одной эзотерической дисциплины, называемой агиоантропонимией и занимающейся исследованием случаев использования имен святых для именования обычных людей (см. [322]), установили, что к таким именам закон Ципфа вполне применим и к фамилиям. Означает ли это, что соответствующие деревья масштабно - инвариантны? Показатель Что же касается других, отличных от простейших, масштабно-инвариантных лексикографических деревьев, к которым мы обращались выше за обобщенным доказательством закона Ципфа, то они аналогичным образом соответствуют обобщенным канторовым множествам с размерностью Дальнейшее обобщение: случай В самом деле, размерность Температура повествования Вышеописанные отклонения допускают на мгновение совершенно иную интерпретацию, идею которой мы позаимствовали в статистической термодинамике. Аналогами физической энергии и физической энтропии послужат стоимость кодирования и информация Шеннона. А показатель Случай С другой стороны, случай, в котором слова настолько «горячи», что это приводит в результате к Вскоре после того, как я описал эту резкую дихотомию в терминах лингвистической статистики, независимо от меня был найден ее физический аналог. Обратная физическая температура В термодинамике объемные свойства объектов выводятся на основании микроканонической равно вероятности. Поскольку молекулы мы в лицо не различаем, допущения касательно их возможных состояний не вызывают у нас сильных эмоций, однако слова обладают ярко выраженной индивидуальностью, поэтому при изучении языка допущение о равновероятности вряд ли будет имеет успех. Предыдущая аналогия становится особенно уместной в рамках определенных обобщенных подходов к термодинамике. Рискуя заслужить обвинение в чрезмерном цитировании работ, имеющих лишь косвенное отношение к настоящему эссе, все же скажу: один из таких формализмов я рассматривал в статьях [339, 344]. Закон доходов парето Еще один пример абстрактного масштабно-инвариантного дерева можно обнаружить в организационных структурах иерархических групп людей. Признаками простейшей масштабно-инвариантной иерархии являются следующие: Если нам нужно сравнить различные иерархии с точки зрения неравенства доходов, то можно классифицировать их членов в порядке уменьшения дохода (члены с одинаковым доходом размещаются в произвольном порядке), обозначить каждого индивидуума его порядковым номером в этом рядку (рангом Здесь без каких бы то ни было изменений применим формализм, использованный в законе Ципфа: ранг
Это соотношение было выведено Лайдаллом в [321]. Степень неравенства определяется, в основном, показателем
который, судя по всему, не имеет никакого достойного обсуждения фрактального смысла. Чем больше формальный показатель Как и в случае частотности словоупотребления, модель можно обобщить, допустив, что в пределах некоторого данного уровня Заметим, что эмпирический показатель Критика. Когда Распределение иных доходов Более широкое исследование распределения доходов, предпринятое в [333, 335, 337], послужило источником вдохновения для работы, уже описанной в главе 37.
|