Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


41  ИСТОРИЧЕСКИЕ ОЧЕРКИ

«Завершив строительство здания, следует убрать леса». Это изречение Гаусса часто приводят себе в оправдание те математики, которые избегают рассказывать о причинах, побуждающих их заниматься теми или иными исследованиями, и забывают об истории своей области. К счастью, в последнее время набирает силу иная тенденция, и многочисленные отступления в данном эссе служат красноречивым показателем того, какой из двух сочувствую лично я. Как бы то ни было, у меня осталось несколько историй, которые слишком велики для отступлений, но могут оказаться занятными и поучительными. Сюда входят и разрозненные трофеи, собранные мною во время библиотечных набегов, спровоцированных моим нынешним увлечением Лейбницем и Пуанкаре.

Аристотель и Лейбниц, великая цепь бытия, химеры и фракталы

В серьезных научных работах давно уже не требуется обязательная ссылка на Аристотеля и Лейбница. Однако раздел этот, как ни странно, написан отнюдь не шутки ради. Некоторые фундаментальные понятия теории фракталов можно рассматривать как математическую реализацию тех восходящих еще к Аристотелю и Лейбницу идей, одновременно глубоких и широких, которые пронизывают всю нашу культуру и оказывают воздействие даже на людей, считающих себя невосприимчивыми к философским веяниям.

Первую нить я обнаружил у Бурбаки [49]: идея дробного интегро – дифференцирования, рассмотренного нами в главе 27, пришла Лейбницу в голову вскоре после того, как он разработал свою версию дифференциального исчисления и предложил обозначения  и  . В письме Лейбница де Лопиталю от 30 сентября 1695 года (см. [296], II, XXIV, с. 197 и далее) сказано (в моем вольном переводе) приблизительно следующее: «Похоже, Иоганн Бернулли уже сообщил тебе о том, как я рассказал ему об одной удивительной аналогии, используя которую, можно сказать, что последовательные дифференциалы образуют в некотором роде геометрическую прогрессию. Можно задаться вопросом, каким же будет дифференциал, обладающий дробным показателем. Оказывается, такой дифференциал можно выразить в виде бесконечного ряда. Этот результат, на первый взгляд, далек от геометрии, которой пока еще ничего неизвестно о дробных показателях, однако можно предположить, что настанет день, когда эти парадоксы принесут какие-нибудь полезные плоды, - совершенно бесполезных парадоксов, как тебе известно, не бывает. Идеи, малозначащие сами по себе, вполне могут дать толчок идеям более значительным и красивым». Дальнейшее развитие эти соображения получили в письме Лейбница Иоганну Бернулли от 28 декабря 1695 года (см. [296], III.I, с. 226 и далее).

В то время как Лейбниц много размышлял о вышеупомянутых материях, Ньютону они, похоже, вовсе не приходили в голову – по крайней мере, в связи с дифференциальным исчислением – и тому есть веская причина. В самом деле (см. «Великую цепь бытия» Лавджоя [318]), Лейбниц глубоко и искренне верил в то, что он называл «принципом непрерывности» или «принципом полноты». Аристотель в свое время также исповедовал аналогичный принцип, полагая, что разница между любыми двумя живущими видами животных можно заполнить другими видами так, что один вид будет непрерывно перетекать в другой. Он весьма интересовался этими «промежуточными» видами животных и даже ввел для их обозначения особый термин (о котором я узнал от Дж. Э. Р. Ллойда) - . (См. также раздел в этой главе под названием natura non facit saltus …)

В принципе непрерывности находит свое отражение (или оправдание?) вера во всякого рода «недостающие звенья» и «переходные ступени», включая и химер в том смысле, какой это слово имело в греческой мифологии: тварей с львиными головами, козлиными телами, драконьими хвостами и вдобавок плюющихся огнем! (Наверное, не стоило мне говорить о химерах именно в этой книге. Если мне теперь случится прочесть где-нибудь, что мое эссе представляет собой фрактальное обоснование химерических понятий, я знаю, кого мне за это благодарить.)

Современная же атомистическая теория в поисках далеких предков стремится привлечь наше внимание к противоположной традиции в греческой философии, а именно – к учению Демокрита. И конфликт между этими двумя противоположными силами продолжает играть центральную созидательную роль в интеллектуальном развитии человечества. Отметим, что канторову пыль можно рассматривать в этой связи как своего рода миротворца, сглаживающего напряженность древнего парадокса: она является бесконечно делимой, но не непрерывной. А вот древнееврейская культурная традиция химер либо отвергает, либо вовсе игнорирует, что продемонстрировано под весьма удивительным углом в работе [532].

В биологических химер никто больше не верит, однако в данном случае это неважно. В математике идея Аристотеля находит приложение в интерполяции последовательности целых чисел отношениями целых чисел и далее – пределами отношений целых чисел. При таком подходе любой феномен, определяемый последовательностью целых чисел, является кандидатом на интерполяцию. Таким образом, к столь ранним рассуждениям о дробных дифференциалах Лейбница подтолкнула идея, составляющая суть его научного мировоззрения (и лежащая в основе его круговой упаковки, см. главу 18).

А что же Кантор, Пеано, Кох и Хаусдорф? Разве первые трое, создавая свои «чудовищные» множества, не занимались, по сути, воплощением в действительность математических химер? И разве не следует нам рассматривать хаусдорфову размерность как шкалу для упорядочения  этих самых химер? Сегодня математики не читают Лейбница и Канта, но в 1900 г. они это делали. Можно представить себе, например, как Хельге фон Кох, прочтя стихотворение Джонатана Свифта, приведенное в предыдущей главе, в разделе о Ричардсоне, строит свою снежинку таким приблизительно манером. Исходный треугольник, изображенный на рис. 70, он определяет как «большую блоху». Затем точно посередине каждого бока большой блохи помещает меньшую треугольную блоху; затем рассаживает еще меньших треугольных блох, где только можно на спинах старых или новых блох. И продолжает эту процедуру,  «как говорят, ad infinitum». Я не знаю, насколько нарисованная мною картина близка к действительности, она лишь иллюстрирует мою мысль. Кох не мог впитать современных ему культурных течений, у истоков которых стоял не кто иной, как Лейбниц. А в пародии на Свифта находят свое отражение некоторые популярные толкования принципа Лейбница.

Теперь оставим математиков, занятых искусством ради искусства (и убежденных, говоря словами Кантора, в том, что «суть математики есть свобода»), и перейдем к людям, которые воспевают Природу, пытаясь ей подражать.

Уж они-то о химерах не мечтают, скажете вы – и будете не правы. Многие из них именно этим и занимаются. В главе 10 мы говорили о практических исследователях турбулентности, ломающих себе головы в попытке решить, концентрируется изучаемый ими процесс на «фасоли», на «спагетти» или на «салате», раздраженных тем, что ответ на вопрос зависит от способа задания вопроса, и под конец требующих каких-то «промежуточных» форм, природа которых объединяет в себе свойства линий и поверхностей. В главе 34 упоминается о другой группе искателей «промежуточного», обретающихся среди исследователей галактических скоплений; этим ученым приходится описывать текстуру определенных фигур как «потокообразную», хотя упомянутые фигуры совершенно ясно состоят из отдельных точек. Не будет ли уместным открыть этим трезвомыслящим искателям, искренне полагающим, что старинные письмена и древнегреческие кошмары не имеют к ним никакого отношения, глаза на то, что ступают они по проторенной дорожке, ведущей к химерам?

Еще одна ниточка, указывающая на родство между канторианцами и ричардсонианцами, обнаружилась как раз в исследованиях кластеризации звезд и галактик. Здесь нужно отметить, что тема эта весьма деликатна, и тому, кто решит заняться отысканием концептуальных корней, следует быть весьма осторожным, поскольку профессиональные астрономы терпеть не могут признавать наличия какого бы то ни было влияния со стороны всякого рода звездочетов – самоучек, «какими бы привлекательными и величественными не представлялись на первый взгляд их измышления» (цитируя Саймона Ньюкома). Этой нерасположенностью, наверное, и объясняется, почему авторство первой полностью описанной иерархической модели обычно приписывается Шарлье, астроному, а не Фурнье д'Альбу (см. соответствующий раздел главы 40) или Иммануилу Канту.

Замечания Канта об отсутствии однородности в распределении материи красноречивы и предельно ясны. Оцените эти блистательные строки (которые, спешу предупредить, вполне способны привить вам вкус к  чтению книг вроде [258] или [438]): «Та часть моей теории, которая дает ей наибольшее очарование … включает в себя следующие идеи … . Вполне естественно … рассматривать туманные звезды как … совокупности многих звезд …. Их с полным правом можно считать целыми вселенными или, если можно так выразиться, Млечными Путями …. Можно далее предположить, что эти вышние вселенные каким-либо образом соотносятся одна с другой и посредством этого взаимного соотношения составляют еще более грандиозную совокупность, … которая, возможно, также является лишь одним из членов нового сочетания чисел! Мы видим только первые члены постепенно расширяющейся соотнесенности миров и совокупностей миров; и начало этой бесконечной прогрессии позволяет нам уже сейчас делать предположения относительно целого. Не существует пределов, лишь бездна … безграничная бездна».

Кант возвращает нас к Аристотелю и Лейбницу, а описанные ранее прецеденты могут объяснить, почему Кантор и Ричардсон так часто оказываются похожи друг на друга (по крайней мере, на мой взгляд). Для усиления драматического эффекта, позвольте мне обратиться к опере Верди «II Trovatore» и перефразировать кое-какие из последних слов Асусены, адресованных Луне, «Egl'era tuo fratello».

Эти великие вожди великих движений презирали друг друга и яростно сражались между собой, однако по своим интеллектуальным корням они – братья.

Разумеется, история не в состоянии объяснить тайны непостижимой эффективности математики. Тайна просто-напросто уходит вперед и меняет свой характер. Как же получается так, что смесь из предположений, результатов наблюдений и поисков интроспективно удовлетворительных структур, каковой смесью, по сути, являются рассматриваемые нами здесь древние писания, служит неисчерпаемым источником концепций настолько глубоких, что они до сих пор вдохновляют математиков и физиков на поразительно эффективные разработки (несмотря на то, что и самим этим концепциям уже, казалось бы, пора умереть от старости, и на то, что не выдержали испытания временем и более качественные наблюдения)?

Броуновское движение и Эйнштейн

Естественное броуновское движение является «самым значительным из тех фундаментальных феноменов, о котором физики узнали благодаря стараниям биологов» [568]. Открыт этот феномен был биологом (причем задолго до 1800 г.), другой биолог (Роберт Броун) обнаружил в 1828 г., что броуновское движение является по своей природе феноменом не биологическим, но физическим. Последний шаг сыграл в этой истории решающую роль, и, стало быть, броуновским движение называется совсем не зря, хоть некоторые критики и пытаются убедить нас в обратном.

Роберт Броун славен и другими заслугами, а о броуновском движении нет ни слова в его биографии, опубликованной в девятом издании «Британской энциклопедии» (1878). В изданиях с одиннадцатого по тринадцатое (1910 – 1926) о броуновском движении упоминается лишь мимоходом. Ну и, разумеется, в тех изданиях «Британники», которые увидели свет после присуждения Перрену Нобелевской премии в 1926 г., броуновское движение описывается весьма исчерпывающе. О причинах столь неохотного признания физической природы броуновского движения подробно рассказывается в [59] и [452]. Интересующимся могу, кроме того, порекомендовать обратить внимание на общие обзоры в последних изданиях «Британники», а также на труды Перрена [469, 470], Томпсона [568] и Нельсона [442].

События, которым положил начало Броун, достигли своей кульминации в 1905 – 1909 гг., причем теоретическими разработками занимался, в основном, Эйнштейн, а экспериментальными – в основном Перрен. Может создаться впечатление, что Эйнштейном двигало стремление объяснить результаты старых экспериментов, однако на самом деле это не так.

Свою первую статью, посвященную броуновскому движению [129] (перепечатанную позже в [131]), Эйнштейн начал словами: «В настоящей статье показано, что, в соответствии с молекулярно-кинетической теорией теплоты, взвешенные в жидкости тела микроскопических размеров совершают движение, легко видимое под микроскопом и объясняемое тепловым движением молекул. Возможно, что рассматриваемое далее движение идентично так называемому «броуновскому движению молекул». Однако доступные мне источники содержат о последнем явлении настолько неопределенные сведения, что я просто не смог сформировать о нем никакого мнения».

Далее, в статье [130] (также перепечатанной в [131]), читаем: «Вскоре после выхода статьи [129] мне сообщили, что физики – и в первую очередь, Гуи (из Лиона) – на основании непосредственных наблюдений пришли к выводу, что так называемое броуновское движение вызвано иррегулярным тепловым движением молекул жидкости. Как качественные свойства броуновского движения. Так и порядок длины описываемых частицами траекторий полностью согласуются с теоретическими положениями. Я воздержусь здесь от попыток сравнения  этих данных с тем весьма скудным экспериментальным материалом, что имеется в моем распоряжении».

Значительно позднее, в письме от 6 января 1948 г., адресованном Мишелю Бессо, Эйнштейн вспоминает, что он «вывел броуновское движение из механики, не подозревая о том, что кто-то уже наблюдал на практике что-либо подобное».

«Канторовы» пылевидные множества и Генри Смит

Один остряк заметил однажды, что наименование броуновского движения в честь Роберта Броуна нарушает основной закон эпонимии, который заключается в том, что слава несовместима со столь простыми именами, как Броун. Может быть, именно поэтому я двадцать лет писал о канторовой пыли, прежде чем случайно обнаружил, что честь ее открытия принадлежит некоему Генри Смиту.

Г. Дж. С. Смит (1826 - 1883) в течение долгого времени был почетным профессором геометрии в Оксфорде, и его «Научные труды» многократно издавались и переиздавались (см. [529]). Разделив лавры с Германом Минковским, он посмертно сыграл главную роль в одном странном эпизоде, срежиссированном Эрмитом. Смит также стал одним из первых критиков римановой теории интегрирования. Один остряк (не тот, что прежде) как-то заметил, что если теории интегрирования Архимеда, Коши и Лебега можно смело считать богоданными, то теория Римана, вне всякого сомнения, представляет собой неуклюжее человеческое изобретение. В самом деле, Смит в 1875 г. (см. главу XXV в [529]) показал, что она неприменима к функциям, точки разрыва которых принадлежат определенным множествам. И какие же множества он привел в качестве примера? Канторову пыль (описанную в главе 8) и пыль положительной меры (см. главу 15).

Вито Вольтерра (1860 – 1940) независимо воспроизвел второй контрпример Смита в 1881 г.

Конечно, ни Смит, ни Вольтерра  ничего больше не предприняли в отношении своих примеров, так ведь и Кантор в этом смысле никак не отличился! Все это описано у Хокинса [207], книга вышла в 1970 г., и мне очень интересно, почему больше нигде (насколько мне известно) не упоминается имя Смита как первооткрывателя «канторовых» пылевидных множеств?

Масштабная инвариантность: старые экспериментальные данные

Масштабная инвариантность в упругих шелковых нитях. Старейшее эмпирическое наблюдение, которое мы сегодня можем интерпретировать как свидетельство масштабной инвариантности в физической системе,  было сделано – как это ни удивительно – сто пятьдесят лет назад. Тогда, по настоятельной просьбе Карла Фридриха Гаусса, Вильгельм Вебер занялся исследованием поведения шелковых нитей, применяемых для крепления подвижных катушек в электромагнитных приборах, при натяжении. Он обнаружил, что при приложении к нити нагрузки в продольном направлении происходит некоторое единовременное ее растяжение, причем если систему теперь оставить в покое, то с течением времени растяжение увеличивается. При снятии нагрузки происходит единовременное сжатие, равное по величине первоначальному растяжению, далее длина нити продолжает постепенно уменьшаться до тех пор, пока не достигает своего исходного значения. Остаточные эффекты возмущения следуют закону вида , т.е. уменьшаются с течением времени гиперболически, а не экспоненциально, чего все ожидали от них тогда – как, впрочем, ожидают и по сей день.

В 1847 г. статью по этой теме публикует Кольрауш [273], далее следуют исследования упругого растяжения стекловолокна, предпринятые в 1865 г. Уильямом Томсоном (тем самым, который позднее стал бароном Кельвином), в 1867 г. – Джеймсом Клерком Максвеллом, и в 1874 г. – Людвигом Больцманом, статью которого Максвелл счел настолько важной, что удостоил ее упоминанием в девятом издании «Британской энциклопедии» (1878).

Над этими именами и датами стоит внимательно поразмыслить. Они свидетельствуют: для того, чтобы сделать ту или иную задачу достойной изучения, недостаточно простого проявления интереса со стороны ученых ранга Гаусса, Кельвина, Больцмана и Максвелла. Задача, которая представляется таким людям увлекательной, но в то же время оказывается им не по зубам, имеет все шансы впасть в полнейшее забвение.

Масштабная инвариантность в электростатических лейденских банках. История вопроса со слов Э. Т. Уиттекера выглядит следующим образом: «В 1745 году Питер ван Мушенбрук (1692 – 1761), профессор Лейденского университета, попытался отыскать способ предохранить электрические заряды от ослабления, какое происходило при соприкосновении заряженных тел с воздухом. С этой целью он исследовал эффект погружения электрически заряженной массы в воду, заключенную в сосуд из непроводящего материала, например, стекла. В одном из экспериментов сосуд с водой был подвешен к металлической трубке с помощью проволоки, причем проволока на несколько дюймов уходила в воду через пробку; сама же трубка, подвешенная на шелковых нитях, располагалась настолько близко от заряженного стеклянного шара, что при движении касалась его. В это время его друг по имени Кунсус, взяв стеклянный сосуд в одну руку, другой случайно коснулся металлической трубки и получил при этом сильный электрический удар; так был открыт способ накопления и усиления электрической энергии. Аббат Нолле назвал изобретенный Мушенбруком прибор лейденской склянкой».

Кольрауш [274] установил, что скорость разряда лейденской банки подчиняется той же закономерности, что и растяжение шелковых нитей: заряд уменьшается со временем по гиперболическому закону. В своей докторской диссертации Жак Кюри (брат и первый сотрудник Пьера Кюри) подробно рассмотрел поведение заряда в лейденской банке при замене стекла на другие диэлектрики и обнаружил, что одни диэлектрики дают экспоненциальное убывание заряда, другие же – гиперболическое с различными значениями показателя .

Масштабная инвариантность: живучие панацеи из прошлого

На протяжении более чем стандартные лет в самых различных научных журналах с завидным постоянством публиковались бесчисленные попытки объяснения масштабно-инвариантных убываний и шумов. Все эти попытки являют собой довольно жалкое зрелище. Их безуспешность однообразна и предсказуема, поскольку они снова и снова – в различных контекстах и различными словами – упираются в одни и те же тупики, бесперспективность которых была осознана еще в начале XIX в.

Панацея смеси Хопкинсона. Столкнувшись с гиперболическим убыванием заряда в лейденской банке, Хопкинсон (кстати, ученик Максвелла) выдвинул в 1878 г. «приблизительное» объяснение, основанное на том, что «стекло можно рассматривать как смесь целого ряда различных  силикатов, которые ведут себя по-разному». Это надо понимать так, что функция убывания, которая выглядит как гипербола, в действительности представляет собой смесь двух или более различных экспоненциальных функций вида , каждая из которых характеризуется своим значением времени релаксации  . Однако даже из тогдашних экспериментальных данных можно видеть, что ни двух, ни четырех экспонент недостаточно для получения гиперболической функции, и аргументацию Хопкинсона сочли несостоятельной.

И все же она продолжает время от времени всплывать, как правило, при отсутствии достаточного для ее опровержения количества данных.

Панацея распределенных значений времени релаксации. Когда данные содержат многие десятичные разряды, в результате чего эмпирическая кривая оказывается представима только в виде смеси какого-нибудь нелепого количества экспоненциальных функций (скажем, 17 или 23), возникает искушение не останавливаться на полпути и рассмотреть возможность существования смеси бесконечного числа экспоненциальных функций. Согласно определению гамма – функции Эйлера, имеем

.

Из этого тождества следует, что если «интенсивность» времени релаксации  экспоненциальной функции  равна , то смесь является гиперболической. Перед нами типичный пример логического круга. Предполагается, что на выходе научного объяснения мы должны получить нечто a priori менее очевидное, нежели имели на входе, однако в данном случае выражения  и  функционально идентичны.

Панацея переходного режима. Вторую по распространенности реакцию при встрече с симптомами масштабной инвариантности, описанными в предыдущем разделе, можно сформулировать следующим образом: все эти гиперболические функции  объясняются, какими-либо   переходными явлениями, если же наблюдать процесс убывания в течение достаточно долгого времени, то характер закономерности непременно изменится на гиперболический. Первую попытку систематического поиска «точки изменения» предпринял в 1907 г. фон Швейдлер [578]: сначала он измерял величину заряда на лейденской банке с интервалами в 100 секунд, затем интервалы постепенно становились больше, и общее время эксперимента составило 16 миллионов секунд (т.е. 200 суток – начался летом, закончился зимой!).  Убывание оказалось гиперболическим, точка в точку. Позднее проводились эксперименты по измерению электрических  - шумов (продолжительность опытов варьировалась от нескольких часов до нескольких дней). Результат - -убывание в поразительном большинстве случаев.

В предыдущих главах – в частности, при исследовании скоплений галактик в главе 9 – отмечалось, что ученые способны настолько погрузиться в поиски порогового значения, что их совершенно перестает занимать необходимость описания и объяснения феноменов, характерных для диапазона масштабной инвариантности. Как ни странно, инженерам также может быть свойственна чрезмерная увлеченность поисками порога, зачастую даже в большей степени. В главе 27 мы рассматривали предложенную мною модель речного стока, которую гидрологи не спешили брать на вооружение только потому, что в ней предполагается бесконечный порог масштабной инвариантности. Конечность порога в инженерном проекте не имеет абсолютно никакого значения, тем не менее, его пылко жаждут во всем остальном, казалось бы, вполне практичные люди.

Масштабная инвариантность по Лейбницу и Лапласу

Классифицировать научные труды Лейбница – занятие как нельзя более отрезвляющее. Рядом с дифференциальным исчислением и другими идеями, доведенными до логического завершения, взгляду открывается поразительное по количеству и разнообразию множество предварительных наметок и всевозможных замыслов. Некоторые примеры мы уже видели: «упаковка» в главе 18 и «принцип непрерывности» в первом разделе настоящей главы. Помимо этого, Лейбниц положил начало формальной логике и первым (в письме к Гюйгенсу, 1679) предположил, что в геометрии должна появиться новая область, позже получившая название топологии. (Перейдя на менее возвышенный уровень, отметим, что именно Лейбниц первым ввел в математические обозначения буквы еврейского алфавита и … знаки Зодиака!)

Моя лейбницемания еще более усугубилась, когда я обнаружил, что ее вдохновитель одно время придавал некоторое значение геометрической масштабной инвариантности. В работе «Euclidis » (см. [296], том II.I, с. 183 – 211), представляющей собой попытку конкретизировать евклидовы аксиомы, Лейбниц на с. 185 пишет: «IV (2): У меня имеются самые разнообразные определения прямой. Например, прямая линия есть кривая, каждая часть которой подобна целому; этим свойством обладает лишь прямая, причем не только среди кривых, но и среди множеств». Сегодня мы можем доказать это утверждение. Далее Лейбниц описывает более ограниченные самоподобные свойства плоскости.

Независимо от Лейбница, та же мысль пришла в 1860 г. в голову Жозефа Дельбёфа (1831 – 1896), бельгийского мыслителя, чьи взгляды Б. Рассел подвергает беззлобной критике [506]. Дельбёф, переключивший свой энтузиазм любителя с классической литературы на философию геометрии, стал поистине необычной личностью в науке. Однако его «принцип подобия» почти ничего не добавляет к вышеприведенной цитате из Лейбница (о которой он, следует сказать, не знал, когда проводил свои исследования, и на которую он впоследствии сослался – благодаря чему о ней узнал и я – с трогательной смесью великодушия и гордости). Дельбёф подвизался у нас еще и на с. 580 (хотя и в несколько второстепенной роли).

Еще одно упоминание о масштабной инвариантности можно усмотреть (но только если вы достаточно великодушны, чтобы быть щедрыми к богачам) в максимах 64 и 69 «Монадологии» Лейбница, где он утверждает, что мельчайшие частицы мироздания обладают в точности настолько же сложной организацией, что и большие его части.

Лаплас также размышлял о вещах, имеющих отношение к масштабной инвариантности. В пятом издании его «Системы мироздания», опубликованном в 1842 г. и переведенном на английский язык (в четвертом издании 1813 г. этого нет), в главе V книги V имеется следующее замечание (см. [289], том VI):  «Одним из замечательных свойств ньютоновского тяготения является то, что если размеры всех тел во Вселенной, расстояния между этими телами и скорости их движения пропорционально увеличивать или уменьшать, то они станут описывать кривые в точности подобные тем, что они описывают сейчас; т.е. Вселенная, уменьшенная до наименьших вообразимых размеров, явит внешним наблюдателям тот же самый облик. Законы природы, таким образом, позволяют нам наблюдать лишь относительные размеры … [Далее цитата продолжается в подстраничном примечании]. Все старания геометров доказать евклидову аксиому о параллельных прямых остаются по сей день безуспешными … . Понятие … окружности не несет в себе ничего, что было бы связано с ее абсолютной величиной. Однако если мы уменьшим ее радиус, нам придется уменьшить пропорционально и ее длину, и длины сторон всех вписанных в нее фигур. Эта пропорциональность представляется мне намного более естественной аксиомой, нежели упомянутая аксиома Евклида. Любопытно наблюдать это же свойство в результатах теории всемирного тяготения».

Natura non facit saltus и «правдивая история Тевтобока»

Фраза «natura non facit saltus» представляет собой наиболее известную формулировку «принципа непрерывности», о котором мы говорили в первом разделе настоящей главы и который Лейбниц полагал одним из «лучших и наиболее подтвержденных» своих достижений. Кроме того, этот принцип можно счесть неявным и отдаленным предтечей геометрических «промежуточных» форм – фракталов. Однако по утверждению Бартлетта [17], автором вышеприведенной фразы является Линней. Подобное приписывание показалось мне не совсем честным, я произвел собственное расследование и обнаружил несколько занятных фактов и целую историю.

Верно, знаменитый ботаник и классификатор восемнадцатого века Карл Линней и в самом деле однажды написал эту фразу, но лишь мимоходом, выражая, скорее, некий обыденный взгляд на вещи, нежели формулируя новый и важный принцип. Фраза Линнея представляет собой перевод французского выражения «La nature ne fait jamais de sauts», которое как раз и встречается у Лейбница. Перу последнего принадлежат и многочисленные вариации на эту тему – такие, например, как «Nulla mutatio fiat per saltum», «Nullam transitionem fieri per saltum», «Tout va par degres dans la nature et rien par saut». Возможно даже, что у Лейбница и нет в точности такой же латинской фразы, какую употребил Линней.

Самое же забавное и интригующее заключается в том, что латинская фраза Линнея, была предвосхищена задолго до Лейбница, еще в 1613 году, в следующем виде: «Natura in suis operationibus non facit saltum» (Употребление в данном случае единственного числа saltum вместо множественного saltus выдает в авторе фразы человека, принадлежащего к тому угрюмому меньшинству, которое полагает, что слово ничто единственного числа.) Но кто же автор? Стивенсон ([541], с. 1382, № 18) приписывает эту честь некоему Жаку Тиссо. А кто такой Тиссо? У меня сложилось впечатление, что этого уже, по всей видимости, никто не знает, благодаря чему я получил замечательный повод совершить набег на парижскую Bibliotheque Nationale.

Искомая фраза обнаружилась в одной пятнадцатистраничной брошюрке с очень длинным заглавием, которое выглядит (в сокращенном виде) следующим образом: «Правдивая история о жизни, смерти и останках великана Тевтобока, короля … которого сразил в 105 году до Р. Х. римский консул Марий… погребен же сей великан был вблизи римского поселения». В брошюре на смеси французского с латынью повествуется об обнаружении недалеко от Гренобля гигантских костей и о том, почему было решено, что принадлежат они указанному Тевтобоку, королю и человеку.

Выяснилось также, что имеется и репринт «Правдивой истории» в сборнике «Varietes historiques et litteraires, recueil de pieces volantes rares et curieuses, annotees par M. Edouard Fournier» (том IX, 1859, с. 241 – 257). Мое любопытство было, наконец, вознаграждено. В чрезвычайно пространном примечании Фурнье описывает, как все происходило на самом деле.  11 января 1613 г. землекопы обнаружили под 17 – 18 футами песка несколько очень больших костей, и среди окрестного населения распространились слухи о том, что под землей была найдена гробница некого великана, а в ней  медаль консула Мария и камень с именем Тевтобока. «Подлинная принадлежность» костей была установлена двумя местными достойными гражданами, история попала в газеты, а сами кости были даже представлены королю Людовику XIII. Относительно происхождения костей разгорелась нешуточная полемика, которая, впрочем, вскоре истощилась. Позже, когда в извлекаемых из-под земли костях ученые стали видеть останки исчезнувших животных, вспомнили и о Тевтобоке. К делу подключили палеонтологов, и те установили, что «король Тевтобок» был мастодонтом.

В примечании также сказано, что никакого Жака Тиссо в действительности не существовало, это всего лишь псевдоним, под которым опубликовали «Правдивую историю» ее истинные авторы – упомянутые выше два «специалиста» … как проспект предполагаемого циркового представления.

И все же первоисточник фразы «Natura non …» так и остается загадкой. Мне почему-то не хочется думать, что ее сочинили два захолустных шарлатана, якобы цитируя Аристотеля. Более вероятно, что они просто бездумно повторяли бытовавшее в те времена присловье, а вопрос о том, кто же в действительности является автором этих слов, все еще остается открыт.

Пуанкаре и фрактальные аттракторы

Этот раздел, в противоположность другим разделам настоящей главы, посвящен открытиям, которые не просто оказались занимательны, но и оказали непосредственное и долговременное воздействие на мою работу. Когда «Фракталы» 1977 г. пребывали уже на стадии корректуры, мое внимание привлекли кое-какие тексты Анри Пуанкаре (1854 – 1912), подтолкнувшие меня к новым направлениям в исследованиях, вкратце описанным в главах с 18 по 20 (полный отчет об этих исследованиях я планирую вскоре представить вашему вниманию). Позвольте мне ответить здесь на некоторые вопросы, которые с неизбежностью возникают при чтении этих (и связанных с ними) работ Пуанкаре.

«Да» и «нет»: Пуанкаре определенно был первым исследователем фрактальных («странных») аттракторов. Однако ничто из того, что мне известно о его трудах, не делает его даже отдаленным предтечей фрактальной геометрии доступных взгляду проявлений Природы.

«Да»: Об этом факте никто уже не помнит, но меньше, чем за год до выхода в свет статьи Кантора [62] (1883) ортодоксальные математики познакомились с предложенными Пуанкаре множествами, близкими к троичной пыли и функции Вейерштрасса, и произошло это задолго до создания революционных теорий множеств и функций вещественного переменного.

«Нет»: В те времена подобные разработки незамеченными не оставались. Они вошли в теорию автоморфных функций (см. главу18), прославивших Пуанкаре и Клейна. В этом же направлении работал и Поль Пенлеве (1863 – 1933), ученый, к которому прислушивались и люди, далекие от чистой математики. Пенлеве интересовался инженерным делом (он был первым пассажиром Уилбера Райта после несчастного случая с Орвиллом Райтом), а затем решил заняться политикой и даже побывал премьер-министром Франции. Кстати, обнаружив, что близким другом Пенлеве был Перрен, я склонен думать, что «мечтания», упомянутые во второй главе, не так уж оторваны от жизни.

«Да»: Кантор и Пуанкаре оказались, в конце концов, по разные стороны интеллектуальных баррикад – причем от едкого сарказма Пуанкаре пострадали и Кантор, и Пеано; чего стоит хотя бы вот такое знаменитое замечание Пуанкаре: «Канторизм обещает нам радости врача, исследующего интересный патологический случай». (См. также подраздел ЭРМИТ, с. 578.) Поэтому мне представляется уместным привести здесь свидетельство того, что когда возникла такая необходимость, Пуанкаре признал-таки, что присутствие классических чудовищ можно допустить пусть и не при описании видимой природы, но хотя бы в абстрактной математической физике. Ниже приводятся в моем вольном переводе выдержки из «Новых методов небесной механики» Пуанкаре ([477], том III, с. 389 – 390).

«Попробуем представить себе рисунок, образуемый двумя кривыми , соответствующими дважды асимптотическому решению задачи о трех телах. Точки их пересечения образуют нечто вроде бесконечно плотной … решетки. Каждая кривая нигде не пересекает самое себя, однако должна изгибаться весьма сложным образом для того, чтобы бесконечно часто пересекать каждый узел решетки.

Кривая эта, должно быть, поразительно сложна, и я даже не стану пытаться изобразить ее. Вряд ли что-либо другое может дать нам лучшее представление о сложности задачи о трех телах или вообще любой задачи динамики, для которой не существует полного набора интегралов …

Перечислим возможные предположения:

1)      Множество  (или ), определяемое как кривая  (или ) плюс ее предельные точки заполняет полуплоскость. Если так, то Солнечная система неустойчива.

 

2)      Множество  (или ) имеет положительную и конечную площадь и занимает ограниченную область плоскости с возможными "пустотами" …

 

3)      И наконец, площадь множества  (или ) обращается в нуль. В этом случае мы имеем дело с аналогом канторовой пыли».

С целью укрепить впечатление, оставляемое этими незаслуженно забытыми строками, приведу еще несколько цитат (опять же в моем вольном переводе) из Адамара [187], Пенлеве [459] и Данжуа [101,  102].

Адамар: «Пуанкаре можно считать предтечей теории множеств в том смысле, что еще прежде, чем она была создана, он применил ее в одном из своих самых поразительных и наиболее справедливо знаменитых исследований. В самом деле, он показал, что особенности автоморфных функций образуют либо полную окружность, либо канторову пыль. Что касается последней категории, то у предшественников Пуанкаре не достало воображения даже представить себе что-либо подобное. Упомянутое множество представляет собой одно из важнейших достижений теории множеств, однако Пуанкаре опередил здесь и Бендикссона, и даже самого Кантора.

Примеры кривых, не имеющих касательных ни в одной точке, стали уже благодаря Риману и Вейерштрассу классическими. Существуют, однако, вполне очевидные различия между, с одной стороны, фактом, установленным посредством умственных упражнений развлекательного характера, проделанных с единственной целью, заключающейся в доказательстве принципиальной возможности установления этого самого факта – очередного экспоната на выставке чудовищ – и, с другой стороны, тем же фактом, но вытекающим из теории, которая опирается на самые обычные и простые задачи, составляющие самую сущность анализа».

Пенлеве: «Я должен настаивать на тех отношениях, что сложились на данный момент между теорией функций и канторовыми пылями. Последние построения были в свое время настолько новы по духу, что не у всякого редактора математического журнала доставало отваги публиковать исследования на эту тему. Многие читатели полагали такие исследования скорее философскими, нежели научными. Однако прогресс математики показал несостоятельность подобных суждений. В 1883 г. (году, дважды знаменательном для истории математики XIX в.) в «Acta Mathematica» поочередно публиковались работы Пуанкаре по функциям Фукса и Клейна и работы Кантора».

Упомянутые работы Кантора, помещенные на с. 305 – 414 второго тома «Acta» (само множество попало на с. 407), являются переводами на французский, выполненными при поддержке Миттаг – Леффлера, тогдашнего редактора «Acta», желающего помочь Кантору в борьбе за признание. Некоторые из них (см. подраздел ЭРМИТ, на с. 578) редактировал Пуанкаре. Однако еще прежде, чем работы Кантора вышли на немецком языке, Пуанкаре уже опубликовал в «Comptes Rendus» вкратце свои результаты. Пуанкаре настолько быстро воспринял одно из нововведений Кантора, что в своей первой статье в «Acta» именовал множества исключительно немецким термином Mengen, не желая тратить время на поиски французского эквивалента.

И наконец, Данжуа [101]: «Некоторые ученые разделяют истины на две категории: одни истины со вкусом одеты, хорошо образованны и воспитаны в соответствии с приличиями, для других же дверь дома джентльмена должна оставаться закрытой. Я говорю о теории множеств, которая, тем не менее, открывает перед нами целую новую Вселенную, несравненно более обширную и менее искусственную, более простую и логичную, более пригодную для моделирования физической Вселенной – одним словом, более истинную, чем известная нам Вселенная.

Канторова пыль обладает многими свойствами непрерывной материи и демонстрирует весьма глубокое соответствие реальности».

В другой работе ([102], с. 23) Данжуа пишет: «Я считаю очевидным, что разрывные модели гораздо более удовлетворительно и успешно, нежели модели общепринятые, объясняют целый ряд естественных феноменов. И поскольку о законах разрывности известно гораздо меньше, чем о законах непрерывности, первые следует изучать как можно более широко и подробно. Когда степени понимания обоих родов законов сравняются, физики получат возможность применять тот или другой подход в соответствии с текущей необходимостью».

К сожалению, Данжуа не подкрепляет эти «мечтания» никакими конкретными разработками, ограничиваясь общими местами из Пуанкаре и Пенлеве. Исключение, пожалуй, составляет лишь его работа по дифференциальным уравнениям на поверхности тора (1932). Отвечая на вопрос, поставленный Пуанкаре, Данжуа показывает, что пересечение решения и меридиана может представлять собой весь меридиан или любую заданную канторову пыль. Первый случай – в отличие от последнего – согласуется с физическим понятием эргодического поведения. Аналогичный пример приводит Боль в 1916 г.

Жак Адамар (1865 – 1963) был знаменитым математиком и специалистом в математической физике, а Арно Данжуа (1884 – 1974) – выдающимся математиком-теоретиком и не имел среди физиков никакого веса. Так или иначе, их мысли не нашли в то время отклика. Оба отдали дань уважения Пуанкаре и Пенлеве, возродив идеи, которые их авторы так и не удосужились подкрепить повторением.

Пуанкаре и распределение Гиббса

Сегодняшнее возрождение интереса к Пуанкаре может послужить оправданием для приведения здесь одной технической подробности, не имеющей непосредственного отношения к настоящему эссе.

Речь идет о конструкции, известной физикам под названием канонического распределения Гиббса, а статистикам – под названием распределения экспоненциального типа. В [476] Пуанкаре стремится найти такие распределения вероятностей, чтобы максимальная оценка параметра правдоподобия , вычисляемого на основании  выборочных значений , имела бы вид . Иными словами, должна существовать возможность изменять масштаб значений  и  в таких распределениях с помощью функций  и  так, чтобы максимальная оценка правдоподобия  была бы равна выборочному среднему переменной  . Это, конечно же, происходит в том случае, когда параметр  является математическим ожиданием гауссовой переменной, однако Пуанкаре дает более общее решение, называемое сейчас распределением Гиббса.

Этот факт был заново и независимо обнаружен Сцилардом в 1925 г. Затем, около 1935 г., Купман, Питман и Дармуа задались тем же вопросом относительно наиболее общей процедуры оценивания при отсутствии ограничений на максимальное значение оценки правдоподобия. Это свойство распределения Гиббса, называемое статистиками достаточностью, играет центральную роль в аксиоматическом представлении статистической термодинамики Сциларда – Гиббса (см. [339,  344]). При таком подходе свойственная статистическим выводам произвольность присутствует в определении температуры замкнутой системы, но отсутствует в выведении канонического распределения. (Более позднее аксиоматическое представление, основанное на «Правиле максимальной информации», объявляет само каноническое распределение статистическим выводом, что, на мой взгляд, искажает его смысл.)

Размерность

Евклид (ок. 300 г. до н. э.). Понятие размерности лежит в основе определений, которые открывают первую книгу «Начал» Евклида, посвященную геометрии плоскости:

1.       Точка есть фигура, не имеющая частей.

2.       Линия есть фигура, обладающая длиной, но не обладающая шириной.

3.       Оконечностями линии являются точки.

4.       Поверхность есть фигура, обладающая только длиной и шириной.

5.       Оконечностями поверхности являются линии.

Развитие темы находим в определениях, с которых начинается короткая девятая книга, посвященная геометрии пространства:

1.       Тело есть фигура, обладающая длиной, шириной и глубиной.

2.       Оконечностями тела являются поверхности.

(На эту тему у Хита [208] имеются подробные комментарии.)

Происхождение перечисленных идей покрыто мраком неизвестности. Гатри (см. [185], т. 1) усматривает следы понятия размерности еще у Пифагора (582 – 507 г. до н. э.), Ван – дер – Варден же полагает, что эти следы не следует принимать в расчет. С другой стороны, Платон (427 – 347 г. до н. э.) в седьмой книге своего «Государства» комментирует Сократа следующим образом: «после плоских поверхностей … правильным будет добавить к двум измерениям третье … то есть измерение, присущее кубам и прочим телам, обладающим глубиной». Было бы весьма полезно разузнать больше о других доевклидовых исследованиях, связанных с понятием размерности.

Риман. Отсутствие каких бы то ни было исследований концепции размерности было отмечено Риманом в его диссертации «О гипотезах, сформировавших фундамент геометрии» (1854).

Эрмит. Репутация Шарля Эрмита как архиконсерватора от математики (см. его письмо Стилтьесу в главе 6) подтверждается также его письмами, адресованными Миттаг – Леффлеру (см. [119]).

13 апреля 1883 г.: «Читать писания Кантора – сущая пытка … и ни у кого из нас не возникает искушения подражать ему … . Соответствие между прямой и плоскостью абсолютно нас не трогает, и мы полагаем, что это наблюдение (по крайней мере, до тех пор, пока никто не сделал из него никаких выводов) протекает из рассмотрения материй настолько произвольных, что автору было бы лучше воздержаться от его обнародования …. Однако Кантор вполне может найти читателей, которые станут изучать его работы с интересом и удовольствием, чего о нас сказать, увы, нельзя».

5 мая 1883 года: «Перевод статьи Кантора был отредактирован Пуанкаре со всей тщательностью …. Он полагает, что почти всем читателям – французам будут чужды изыскания Кантора, сочетающие в себе философию с математикой и носящие чрезмерно произвольный характер. Я думаю, что Пуанкаре прав».

Пуанкаре. Красноречивое и в коечном счете чрезвычайно плодотворное развитие идей Евклида было представлено Пуанкаре в 1903 г. (см. [478], глава III, раздел 3) и в 1912 г. (см. [479], часть 9). Позволю себе процитировать кое-что в моем вольном переводе.

«Что мы имеем в виду, говоря, что размерность пространства равна трем? Если для разделения континуума  достаточно рассмотреть в качестве сечений определенное количество различных элементов, мы говорим, что размерность такого континуума равна единице …. Если  же … для разделения континуума достаточно взять сечения, образующие один или несколько континуумов с размерностью, равной единице, мы говорим,  что размерность континуума  равна трем; и так далее.

Для обоснования этого определения необходимо выяснить, как именно геометры вводят в начале своих работ понятие размерности. Итак, что же мы видим? Как правило, они начинают с определения поверхностей как границ тел либо участков пространства, кривых – как границ поверхностей, точек – как границ кривых, причем утверждают, что далее эту процедуру продолжить невозможно.

Это в точности совпадает с определением, приведенным выше: для разделения пространства необходимы сечения, называемые поверхностями; для разделения поверхностей – сечения, называемые кривыми; точку же разделить нельзя, так как она не является континуумом. Поскольку кривые разделяются сечениями, которые не являются континуумами, размерность кривых равна единице; поскольку поверхности разделяются непрерывными сечениями с размерностью, равной единице, размерность поверхностей равна двум; и, наконец, пространство можно разделить непрерывными сечениями, обладающими двумя измерениями, следовательно, пространство является континуумом с размерностью, равной трем».

Вышеприведенные рассуждения неприменимы к фрактальной размерности. Для внутренних областей всевозможных островов, упоминаемых в нашем эссе, размерности  и  совпадают, и обе равны двум, однако береговые линии ведут себя совершенно иначе: их топологическая размерность равна единице, а фрактальная – превышает единицу.

 От Брауэра до Менгера. А сейчас заглянем в «Теорию размерности» Гуревича и Уоллмена [231]: «В 1913 г. Брауэр построил на интуитивном фундаменте, предложенном Пуанкаре, точное и топологически инвариантное определение размерности, которое для очень широкого класса пространств эквивалентно тому, что мы используем сегодня. Статью Брауэра в течение многих лет никто не замечал. Затем, в 1922 г., независимо от Брауэра и друг от друга концепцию Брауэра воспроизвели Менгер и Урысон, причем с важными уточнениями.

До тех пор смысл термина размерность математики представляли себе довольно расплывчато. Конфигурация считалась  - мерной, если наименьшее количество вещественных параметров, необходимых для описания (неким неопределенным образом) ее точек, равнялось  . Опасность и несостоятельность такого подхода стали очевидными благодаря двум выдающимся открытиям конца XIX в.: канторово однозначное соответствие между точками прямой и точками плоскости и непрерывное отображение интервала на всю площадь квадрата, продемонстрированное Пеано. Первое подорвало всеобщую уверенность в том, что плоскость богаче точками, нежели прямая, и показало, что размерность можно изменять однозначным преобразованием. Второе опровергло убеждение, что размерность можно определить  как наименьшее число непрерывных вещественных параметров, требуемых для описания пространства, и показало, что с помощью однозначного непрерывного преобразования размерность можно увеличить.

Остался, однако, открытым один чрезвычайно важный вопрос: возможно ли установить соответствие между евклидовыми пространствами с размерностями  и , которое сочетало бы в себе признаки построений Кантора и Пеано, т.е. соответствие, которое было бы одновременно однозначным и непрерывным? Вопрос этот можно с полным правом считать ключевым, так как существование указанного преобразования евклидова  - пространства в евклидово же  -пространство означало бы, что размерность (в ее естественном понимании, заключающемся в том, что размерность -пространства равна ) не имеет абсолютно никакого топологического смысла! Как следствие, класс топологических преобразований оказался бы в этом случае чрезмерно широким для того, чтобы остаться хоть сколько-нибудь полезным для практического геометрического применения.

Первое доказательство того, что евклидово  -пространство и евклидово -пространство являются гомеоморфными только в том случае, когда , было дано Брауэром в 1911 г. (см. [57], т.2, с. 430 – 434; особый случай  и  был рассмотрен в 1906 году Й. Люротом). Однако в этом доказательстве не указывалось в явном виде какое-либо простое топологическое свойство евклидова  -пространства, которое отличало бы его от евклидова  -пространства и обусловливало бы невозможность гомеоморфизма этих пространств. Более сильный в этом смысле оказалась процедура, предложенная Брауэром в 1913 г., когда он ввел целочисленную функцию пространства, топологически инвариантного по самому своему определению. В евклидовом пространстве эта функция всегда принимает значение  (оправдывая тем самым свое название).

Тем временем Лебег подошел к доказательству того, что размерность евклидова пространства топологически инвариантна, с другой стороны. В 1911 г. (см. [295], т.4, с. 169 – 210) он отметил, что квадрат можно покрыть произвольно малыми "плитками" таким образом, что ни одна точка квадрата не будет содержаться в более чем трех таких плитках; однако если плитки достаточно малы, то, по меньшей мере, каждые три из них имеют общую точку. Аналогичным образом может быть разбит на произвольно малые кирпичики куб в евклидовом  -пространстве так, что общую точку будут иметь не более чем  таких кирпичиков.

Лебег предположил, что это наименьшее число не может быть меньше , т.е. при любом разбиении на достаточно малые элементы должна существовать точка, общая для, по меньшей мере,  этих элементов. (Теорема доказана Брауэром в 1913 г.) Теорема Лебега указывает и на топологическое свойство, отличающее евклидово - пространство от евклидова - пространства, и тем самым также предполагает топологическую инвариантность размерностей евклидовых пространств».

Об относительных вкладах в развитие теории размерности Пуанкаре, Брауэра, Лебега, Урысона и Менгера можно прочесть в заметках Х. Фрейденталя в [57] (т. 2, глава 6) и Менгера (см. [428], глава 21).

Фрактальная размерность и Дельбёф. Эта история гораздо более проста: фрактальная размерность появилась, практически, во всеоружии из трудов Хаусдорфа. Однако без налета таинственности не обошлось и здесь. В самом деле, у Рассела, например, нет ни единого слова о бурях, что бушевали тогда вокруг Кантора и Пеано, но зато есть любопытное примечание ([506], с. 162): «Дельбёф, правда, говорит о геометриях с размерностями вида , но не указывает при этом никаких источников (Rev. Phil. T. xxxxvi, с. 450)». Дельбёф, стало быть, заслуживает нашего особого внимания (см. также раздел масштабная инвариантность по лейбницу и лапласу), однако и после самых тщательных поисков (в которых мне помогал Ф. Фербрюгген) я  не смог обнаружить в работах Дельбёфа больше никаких намеков на фрактальную размерность.

Булиган. Определение размерности Кантора – Минковского – Булигана (см. главы 5 и 39) гораздо менее удовлетворительно, нежели определение Хаусдорфа – Безиковича, но мне все же хотелось бы сказать здесь несколько слов в защиту Жоржа Булигана (1889 – 1979). Его многочисленные труды сейчас мало кто читает, даже в Париже, однако в те времена, когда я был студентом и сдавал ему экзамены, они пользовались большой известностью. Его книги всегда напоминают мне о том, кто именно ввел меня в мир «современной» математики, и я часто задаюсь вопросом, смогли бы другие – не столь мягкие и человечные, но, возможно, более правильные в педагогическом смысле – способы представления материала дать такое же интуитивное понимание предмета, которое в случае необходимости всегда под рукой и никогда меня не подводило. Наверное, нет. Доживи Булиган до сегодняшнего дня и окажись свидетелем великих побед геометрии, которую столь беззаветно любил, он, я уверен, остался бы доволен увиденным.

Функции Вейерштрасса

Непрерывные, но нигде не дифференцируемые функции Вейерштрасса оказали столь сильное воздействие на развитие математики, что становится любопытно выяснить, не следует ли их история образу, нарисованному Фаркашем Бойяи в письме к своему сыну, Яношу: «Есть доля истины в том, что у многих вещей есть своя эпоха, в течение которой одни одновременно встречаются в самых различных местах – так весной на каждом склоне можно найти цветущие фиалки». Еще, похоже, слетаются соавторы на мед возможной публикации.

Однако в данном случае события разворачивались совершенно иначе. Трудно поверить, но Вейерштрасс так и не опубликовал своего открытия, хотя и прочел о нем лекцию в Берлинской академии наук 18 июля 1872 г. Конспект лекции попал-таки в изданное значительно позднее «Собрание сочинений» [588], однако мир узнал об открытии Вейерштрасса только в 1875 г. из статьи Дюбуа - Реймона [115] (там же эти функции были впервые названы именем первооткрывателя). Таким образом, год 1875 является не более чем удобной символической датой для обозначения начала Великого кризиса математики.

Дюбуа – Реймон пишет, что «метафизика этих функций скрывает, по всей видимости, множество загадок, и я не могу избавиться от ощущения, что поиски ответов на них приведут нас к границе наших интеллектуальных возможностей». Возникает и другое ощущение: никто, похоже, особенно и не спешил выяснить, где же находятся эти самые границы. Те из современников, кто было подступился к задаче (Гастон Дарбу, например), тут же отступили и ударились в крайний консерватизм, у других же и на это духу не хватило. Кроме того, невольно вспоминается другая – значительно более известная – история о Гауссе, скрывающем свое открытие неевклидовой геометрии «из страха перед бунтом беотийцев» (из письма Гаусса к Бесселю от 27 января 1829 г.). (Позднее, однако, Гаусс открылся сыну своего друга Яношу Бойяи – с катастрофическими последствиями для рассудка последнего – после того, как Янош Бойяи опубликовал статью о собственном открытии неевклидовой геометрии, совершенном, разумеется, независимо от Гаусса.) Наконец, на память приходит данный однажды Кантору совет Миттаг – Леффлера, суть которого заключается в том, что не стоит воевать с редакторами, нужно лишь придержать свои наиболее дерзновенные открытия до тех пор, когда мир созреет для них. Можно по пальцам перечесть случаи, когда самые передовые деятели науки с такой необычайной неохотой воспринимали новое, как в этих трех не похожих одна на другую историях.

Помимо Вейерштрасса здесь следует упомянуть еще три имени. Уже давно ходят слухи (зарегистрированные в письменном виде в [443]), что Риман приблизительно в 1861 г. демонстрировал своим студентам функцию , которая являлась, по его словам, непрерывной и недифференцируемой. Мы, однако, не располагаем ни точной формулировкой утверждения Римана, ни его доказательством. Более того, если термин «недифференцируемая»  означает «нигде не дифференцируемая», то любое предлагаемое доказательство должно быть ошибочным, поскольку в работах [169] и [528] совершенно недвусмысленно показано, что функция  имеет положительную и конечную производную в определенных точках. Функцией Римана интересовался также и Кронекер, что еще более подчеркивает, насколько занимал этот вопрос умы тогдашних математиков. (Для расширения знаний по истории вопроса рекомендую обратить внимание на [410], [207] и [116,  117,  118,  119].)

Больцано, чье имя связано с именем Вейерштрасса в другом, более широко известном контексте, также фигурирует в этой истории. Бернард Больцано (1781 – 1848) – один из немногих подпольных героев от математики, бóльшая часть трудов которого оставалась невостребованной вплоть до начала третьего десятилетия XX в. – описал в 1834 г. близкий аналог функции Вейерштрасса, но не смог разглядеть того ее свойства, благодаря которому она приобретает для нас столь большое значение (см. [526], с. 8).

Третий персонаж, не получивший широкой известности ни при жизни, ни посмертно, играет в нашей истории вторую по значимости после Вейерштрасса роль. Шарль Селлерье (1818 – 1890) преподавал в Женеве и не опубликовал ничего сколько-нибудь заметного, однако в бумагах, оставшихся после его смерти, обнаружилось неожиданное «откровение». Одна из папок, недатированная, но помеченная «Очень важно и, полагаю, ново. Проверено. Можно публиковать в настоящем виде», содержала рукописный текст, описывающий предельный случай  функции, идентичной функции Вейерштрасса, с известными выводами. Пожелтевшие страницы показали некоему ученому по фамилии Кайе, который добавил к тексту примечание (откуда, собственно, и взяты вышеприведенные сведения) и незамедлительно опубликовал его в виде статьи [73]. Публикация вызвала некоторый умеренный интерес (особенно со стороны Грейс С. Юнг). В 1916 г. Рауль Пикте вспоминал, что когда он был студентом у Селлерье (приблизительно в 1860 г.), тот упоминал на занятиях об этой своей работе. Письменных свидетельств, однако, не сохранилось, и в итоге первенство Селлерье так и осталось недоказанным.

Таким образом, Вейерштрасс – единственный законный претендент, и некому оспорить правомочность именования рассматриваемой функции в его честь, однако в свете известных нам весьма странных событий здесь есть над чем поразмыслить. Больцано и в самом деле опубликовал некое выражение, полагая его безобидным, но двое других – скромный провинциал, которому незачем было беспокоиться за  свою научную репутацию по причине полного отсутствия таковой, и гроссмейстер, который, скорее всего, ясно осознавал, что его научную репутацию ничто запятнать не сможет, - несомненно понимали, что оказалось у них в руках, и все же предпочли промолчать и выждать. Принцип «публикуйся или пропадай» был им, судя по всему, чужд как ничто другое.

Поскольку функция Вейерштрасса часто используется в качестве аргумента в призывах к «разводу по обоюдному согласию» между математикой и физикой, представляется уместным упомянуть об отношении ее первооткрывателя к взаимосвязи между этими двумя путями постижения мира. Имя Вейерштрасса можно встретить в геометрической оптике (точки Юнга – Вейерштрасса на сферической линзе). Кроме того, в своей вступительной лекции в 1857 г. (выдержки из которой приводятся у Гильберта [214], том 3, с. 337 – 338) Вейерштрасс особо подчеркивал, что физикам не следует видеть в математике всего лишь вспомогательную дисциплину, а математикам не стоит рассматривать вопросы физиков, как удобные примеры к своим методам. «На вопрос, возможно ли в действительности извлечь что-нибудь полезное из абстрактных теорий, которыми, на первый взгляд, так увлечена современная [1857 г.] математика, можно ответить, что основываясь на одних только абстрактных умопостроениях, греческие математики вывели свойства конических сечений, причем случилось это задолго до того, как было установлено, что по  траекториям, имеющим форму конических сечений, движутся планеты вокруг Солнца». Amen.

 



<< ПредыдущаяОглавлениеСледующая >>