6.1. История радиорелейной связиРадиорелейная связь (от радио и французского relais – промежуточная станция), радиосвязь, осуществляемая при помощи цепочки приемо-передающих радиостанций, как правило, отстоящих друг от друга на расстоянии прямой видимости их антенн. Таким образом, радиорелейная связь – это особый вид радиосвязи на ультракоротких волнах с многократной ретрансляцией сигнала [21,22]. Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной и телевизионной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Одна из первых таких линий протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию. В те годы для радиорелейных линий считалось наиболее целесообразным применение импульсной модуляции, техника которой была хорошо освоена в радиолокации, одновременно с временным уплотнением. Казалось, что при тогдашнем уровне развития технологий это сулит большие преимущества. Но цикл теоретических исследований и экспериментальных проработок, проведенных в Научно-исследовательском институте радио, подтвердил складывающееся в то время у специалистов в области радиорелейной связи мнение, что сочетание частотной модуляции с частотным уплотнением позволит создать линии, не уступающие даже наиболее совершенным коаксиальным кабельным системам. Надо подчеркнуть, что сказанное относится к концу 1940-х – началу 1950-х годов. А поскольку, как известно, развитие общества и науки идет по спирали, то сегодня современные новейшие технологии позволили вернуться к цифровым методам передачи на более высоком уровне – передача данных, цифровая телефония и телевидение. В середине 50–х годов прошлого века в России было разработано семейство радиорелейной аппаратуры «Стрела» [23], работавшей в диапазоне 1600-2000 МГц: «Стрела П» – для пригородных линий, обеспечивающих передачу 12 телефонных каналов; «Стрела Т» – для передачи одной телевизионной программы на расстояние 300–400 км и «Стрела М» – для магистральных линий емкостью 24 канала и протяжённостью до 2500 км. На аппаратуре «Стрела» был построен ряд первых отечественных радиорелейных линий (РРЛ). Вот некоторые из них: Москва – Рязань, Москва – Ярославль – Нерехта – Кострома –Иваново, Фрунзе – Джалал Абад, Москва – Воронеж, Москва – Калуга, Москва – Тула. Следующая разработка для РРЛ – аппаратура Р-60/120. Она позволяла создавать 3–6-ствольные магистральные линии длиной до 2500 км для передачи 60–120 телефонных каналов и на дальности до 1000 км для передачи телевизионных программ с выполнением рекомендаций МККТ и МККР по качественным показателям. Радиорелейные линии на базе аппаратуры Р–60/120 были построены в различных районах СССР. Одной из первых и, пожалуй, самой протяженной была линия Москва – Ростов-на-Дону. Оборудование типа Р-60/120, работавшее в диапазоне 2 ГГц, было предназначено для внутризоновых РРЛ. Принципиальные решения отдельных узлов и общее построение оборудования во многом напоминало «Стрелу», но при разработке учитывались все рекомендации Международного консультативного комитета по радиовещанию (МККР). В соответствии с ними промежуточные частоты передатчика и приемника были одинаковы и равны 70 МГц. Большое внимание уделялось вопросам внутрисистемной электромагнитной совместимости (ЭМС), учитывались все возможные паразитные продукты преобразования частот в смесителе передатчика и каналы помех в смесителе приемника. Аппаратура работала в диапазоне 1600–2000 МГц. Мощность передатчика была доведена до 3 Вт. Была предусмотрена система телеобслуживания промежуточных станций, совершенно изменена конструкция стоек. Чтобы передавать телевизионные сигналы на большие расстояния, а также сигналы телефонных каналов, нужно было создать радиорелейное оборудование магистральных РРЛ. Магистральным РРЛ были выделены соответствующие полосы частот в диапазонах 4 и 6 ГГц. В таких диапазонах, при одинаковых габаритных размерах антенн и прочих равных условиях, излучаемая в эфир мощность увеличивается в 2,5–3 раза за счёт большого коэффициента усиления антенны. Это было весьма существенно для достижения необходимых качественных показателей передаваемых сигналов телевидения и многоканальной телефонии. Первой отечественной радиорелейной системой магистральной радиорелейной связи была система Р-600 [23], работающая в диапазоне 4 ГГц. Первая магистральная радиорелейная линия Ленинград–Таллин, оборудованная аппаратурой Р-600, была построена в 1958 г., после этого началось их серийное производство. Система и аппаратура Р-600 послужили основой дальнейшего совершенствования радиорелейного оборудования для магистральных РРЛ. В период 1960—1970 г.г. были разработаны, произведены и внедрены в эксплуатацию новые виды оборудования семейства Р-600: Р-600М, Р-6002М, Р-600-2МВ и «Рассвет», также работающие в диапазоне 4 ГГц. В телевизионном стволе обеспечивалась передача видеосигнала и сигнала звукового сопровождения. Основные технические показатели этих систем приведены в табл. 6.1. Таблица 6.1
Важнейшей разработкой, проводившейся в СССР в середине 60-х годов, было создание магистральной радиорелейной системы большой ёмкости «Восход». Она предназначалась, в первую очередь, для РРЛ Москва – Дальний Восток. Разработка системы связи, радиоаппаратуры, источников гарантированного электропитания, системы резервирования и методов контроля качества работы аппаратуры проводилась с учётом обеспечения высокой надёжности линии. Расчётный коэффициент исправного действия линии протяжённостью 12 500 км составлял 0,995, а потеря достоверности при передаче бинарной информации без кодовой защиты – не более . Сверхвысокочастотная (СВЧ) приёмопередающая аппаратура «Восход» работала в полосе частот 3400—3900 МГц. Все активные элементы аппаратуры «Восход» были выполнены на полупроводниковых приборах, исключение составляли СВЧ выходные ступени передатчиков и гетеродинных трактов, где использовались лампы бегущей волны (ЛБВ). Для обеспечения высокой надежности в системе «Восход» было предусмотрено применение разнесенного по высоте приёма с быстродействующей системой автоматического выбора и параллельная работа передатчиков. Система разнесенного приёма, весьма эффективно решая задачу борьбы с замиранием сигналов на интервалах РРЛ, одновременно позволяла автоматически резервировать приёмники станции. Параллельная работа передатчиков обеспечивала их автоматическое резервирование и удвоение выходной мощности передатчиков, которая в аппаратуре «Восход» составляла 10 Вт. Вся система автоматического резервирования приёмопередающего оборудования замыкалась в пределах каждой станции, поэтому в «Восходе» не было необходимости передавать по служебным каналам какие-либо сигналы для управления работой системы резервирования (как это имеет место в радиорелейных системах с поучастковой системой резервирования стволов). Таким образом, особенностью системы «Восход» являлось отсутствие специального резервного ствола, что позволяло сделать все радиостволы рабочими и, следовательно, лучше использовать отведенную для системы полосу радиочастот. В системе «Восход» было предусмотрено 8 широкополосных рабочих стволов, из которых 4 предназначались для работы на основном магистральном направлении и 4 – на ответвлениях или пересекающих магистралях. Все стволы универсальны, одинаково пригодны как для передачи сигналов многоканальной телефонии, так и для передачи сигналов телевизионных программ. Телефонный ствол системы обеспечивал передачу сигналов 1920 каналов ТЧ в случае, когда аппаратура промежуточных станций размещалась в кабинах наверху башни (т. е. при коротких волноводах), а аппаратура узловых и оконечных станций – в наземных помещениях. Пропускная способность телефонного ствола при размещении аппаратуры в наземных помещениях на всех станциях составляла 1020 каналов ТЧ. В нижней части группового спектра телефонного ствола обеспечивалась передача сигналов служебной связи и дистанционного обслуживания (телеобслуживания). Система телеобслуживания позволяла иметь до 16 автоматизированных промежуточных станций между соседними узловыми станциями. Телевизионный ствол системы давал возможность передавать видеосигнал и четыре канала тональных (звуковых) частот, организованных на поднесущих частотах и расположенных выше спектра видеосигнала. Эти тональные звуковые каналы использовались как для передач сигналов звукового сопровождения телевидения, так и радиовещания. Следующим важным этапом в развитии техники радиорелейной связи стала разработка в 1970 году комплекса унифицированных радиорелейных систем связи «КУРС». Комплекс охватывал четыре системы связи, работающие в диапазонах 2, 4, 6 и 8 ГГц. Аппаратура в диапазонах 4 и 6 ГГц предназначалась для магистральных радиорелейных линий (РРЛ), а в диапазонах 2 и 8 ГГц – для зоновых РРЛ. В приёмопередающей аппаратуре различных диапазонов частот широко использовались унифицированные узлы и блоки (УПЧ, умножители частоты и т. п.). Все они были выполнены на наиболее совершенных для того времени полупроводниковых приборах и других комплектующих изделиях отечественного производства. Аппаратура КУРС-4 и КУРС-6 отличалась от предыдущих разработок и своей компактностью. Например, в системе КУРС-4 в одной стойке шириной 600 мм размещалось 4 приёмника или 4 передатчика. В табл. 6.2 приведены основные технические характеристики магистральных систем КУРС–4 и КУРС–6. Таблица 6.2
К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяженность которой составляла около 10 тыс. км, емкостью каждого ствола, равной 14 400 каналов тональной частоты. В эти годы суммарная протяженность радиорелейных линий в СССР превысила 100 тыс. км. Последней разработкой в СССР для магистральной радиорелейной связи было создание нового поколения оборудования «Радуга». В его состав вошли: приёмопередающее оборудование, работающее в диапазоне 4 ГГц – «Радуга- 4»; приёмопередающее оборудование, работающее в диапазоне 6 ГГц – «Радуга- 6»; оборудование резервирования «Радуга». Для «Радуги» было разработано новое поколение унифицированного оборудования «Рапира-М», включающего: оконечную аппаратуру телефонных и телевизионных стволов; ЧМ-модемы; аппаратуру служебной связи и телеобслуживания. Магистральная радиорелейная система «Радуга-Рапира-М» позволяла создавать магистральные РРЛ в двух диапазонах частот: 4 ГГц (в полосе частот 3400–3900 МГц) и 6 ГГц (в полосе частот 5670–6170 МГц). В каждом диапазоне возможна организация до семи рабочих стволов и одного резервного ствола. По каждому из рабочих стволов обеспечивалась: • в режиме передачи телевидения – передача видеосигнала и сигналов 4 каналов звукового сопровождения и вещания. Технические параметры оборудования системы «Радуга-Рапира-М» обеспечивали высокие качественные показатели и надежность работы каналов и трактов РРЛ, оснащенных этим оборудованием. Таким образом, в России со времен СССР существует широко развитая сеть аналоговых магистральных и внутризоновых радиорелейных линий, что делает экономически целесообразным использование существующих радиорелейных станций для организации цифровых трактов. В настоящее время процесс модернизации аналоговых радиорелейных линий в цифровые называют цифровизацией. К числу радиорелейных станций (РРС) цифровизация которых возможна, относятся: «Восход-М», «Курс-4», «Курс-6», «Курс-4М», «ГТТ-70/4000», «ГТТ-70/8000», «Ракита-8», «Радуга-4», «Радуга-6», «Радуга-АЦ», «Комплекс» и др. При цифровизации указанных РРС используется оборудование, обычно подключаемое по промежуточной частоте 70 МГц. Кроме того, возможен вариант дополнительной передачи цифрового сигнала Е1 (2048 кбит/с) без нарушения работы аналоговой РРЛ. В конце прошлого века были разработаны различные варианты цифровых модемов на скорости от 2 до 34 Мбит/с. В результате, было создано семейство цифровых модемов для аналоговых РРЛ на скоростях: 2,048 Мбит/с, 8,448 Мбит/с, 17 Мбит/с и 34,368 Мбит/с. Для организации передачи различной цифровой информации со скоростями 8,448 Мбит/с, 17 Мбит/с или 34,368 Мбит/с использовались свободные от аналоговой информации стволы. Модемы на эти скорости могут комплектоваться мультиплексной аппаратурой и, таким образом, обеспечивать передачу соответственно 4, 8 или 16 цифровых потоков по 2,048 Мбит/с, что хорошо согласуется с принципами построения синхронной цифровой иерархии (SDH). Во всех типах цифровых модемов обеспечивался контроль входного и выходного сигналов, обнаружение и генерация сигналов индикации аварийного состояния (СИАС) и контроль коэффициента ошибок без перерыва и с перерывом связи. Было организовано производство всех названных цифровых модемов, и они нашли свое применение на действующей сети РРЛ.
|