Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


4.3.1. Инверсный фильтр

Простейшим способом восстановления четкости изображения является обработка наблюдаемого изображения в пространственно-частотной области  инверсным фильтром [4.5]. Передаточная функция инверсного восстанавливающего фильтра определяется соотношением

.                         (4.26)

Она выбирается из условия , обеспечивающего компенсацию искажений, вносимых ФРТ формирующей системы. При этом спектр оценки исходного изображения равен

            (4.27)

Таким образом, восстановленное изображение равно сумме исходного изображения и шума наблюдения, прошедшего через инверсный фильтр. При отсутствии шума достигается точное восстановление инверсным фильтром исходного изображения  по искаженному изображению . При восстановлении изображений инверсным фильтром возникают краевые эффекты, которые проявляются в виде осциллирующей помехи большой мощности, полностью маскирующей восстановленное изображение. Краевые эффекты возникают даже при отсутствии шума наблюдения.

На рис. 4.13. и 4.14 приведены результаты восстановления изображений «Часы» и «Сатурн» инверсным фильтром: а) исходные изображения размером  элементов; б) дефокусированные изображения, полученные в результате свертки с гауссовским импульсом при  с последующим «обрезанием» краев до размеров  элементов; в) изображения, восстановленные инверсным фильтром. Восстановить изображение «Часы» инверсным фильтром не удается из-за краевых эффектов. Практически идеальное восстановление изображения «Сатурн»  объясняется тем, что объекты наблюдаются на фоне постоянной яркости и расположены в центре кадра. В этом случае  изображения  и , полученные в результате обычной и циклической свертки с ФРТ, равны друг другу. Отметим, что при этих условиях алгебраический метод  также позволяет точно восстановить изображение. Однако при инверсной фильтрации процедура обращения матриц заменяется на более простую процедуру перемножения массивов в частотной области.

На рис. 4.15 и 4.16 приведены сечения типичных частотных характеристик ФРТ  и соответствующих им инверсных фильтров, из которых следует,  что модуль передаточной функции формирующей системы, как правило, стремится к нулю   на   высоких    частотах.   Кроме    того,   нули   в передаточной функции имеются в рабочей полосе частот при расфокусировке камеры (4.10) и смазе (4.6). В этом случае инверсный фильтр является сингулярным, т.к. модуль его передаточной функции становится бесконечно большим на пространственных частотах, соответствующих нулевым значениям модуля передаточной функции  искажающей системы. Причем наличие даже относительно слабого шума приводит к появлению интенсивных шумовых составляющих на выходе инверсного фильтра, полностью разрушающих изображение. Этот факт иллюстрируется рис.4.17.  К дефокусированному изображению «Сатурн» (рис. 4.14.б) был добавлен аддитивный дельта-коррелированный шум. Из восстановленного изображения видно, что даже при пренебрежимо малом уровне шума (отношение сигнал/шум ) метод инверсной фильтрации дает очень плохой результат.

 

 

а)

б)

 

 

в)

 

Рис.4.13. Результаты восстанвления изображения “Часы”

 

 

 

 

 

а)

б)

 

 

в)

 

Рис.4.14. Результаты восстанвления изображения “Сатурн”

 

 

  

 

 

 

 

Рис.4.15. Частотные характеристики искажающей системы с цилиндрической ФРТ  и инверсного фильтра

Рис.4.16. Частотные характеристики искажающей системы с гауссовской ФРТ  и инверсного фильтра

 

Рис.4.17. Результат восстановления изображения “Сатурн” при

Существуют частные методы ослабления шумов, которые заключаются в ограничении полосы инверсного фильтра. Последовательно с инверсным фильтром включается корректирующее звено,  модуль передаточной функции которого стремится к нулю за пределами некоторой наперед заданной граничной частоты. При этом граничная частота выбирается из компромисса между снижением уровня шума и четкостью восстановленного изображения. Однако эти методы не решают проблем краевых эффектов  и наличия нулей  передаточной функции формирующей системы в рабочем диапазоне частот.

Таким образом, несмотря на очевидную простоту метода инверсной фильтрации, он может успешно использоваться для восстановления ограниченного класса изображений, у которых уровень фона на краях постоянен. Кроме того, метод инверсной фильтрации обладает чрезвычайно низкой помехоустойчивостью.

 



<< ПредыдущаяОглавлениеСледующая >>