Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


4.3.2. Фильтр Винера

Инверсная фильтрация обладает низкой помехоустойчивостью, потому что этот метод не учитывает зашумленность наблюдаемого изображения. Значительно менее подвержен влиянию помех и сингулярностей, обусловленных нулями передаточной функции искажающей системы, фильтр Винера (смотри главу 3), т.к. при его синтезе наряду с видом ФРТ используется информация о спектральных плотностях мощности изображения и шума.  При этом полагается, что изображение является реализацией случайного двумерного поля. Частотная характеристика восстанавливающего фильтра Винера, полученная для периодически продолженных изображений, с учетом (2.34) имеет вид [4.6]

 ,     (4.28)

где , ,  - спектральные плотности мощности периодически продолженных  шума,  наблюдаемого и исходного изображений;  - взаимная спектральная плотность мощности периодически продолженных исходного и наблюдаемого изображений;  - символ комплексного сопряжения. Как и при инверсной фильтрации, обработка производится в частотной области.

Преобразуем передаточную функцию фильтра Винера  (4.28) следующим образом:

              (4.29)

Анализируя соотношения (4.28) и (4.29), можно отметить следующее:

1. При отсутствии шума фильтр Винера переходит в инверсный фильтр. Следовательно, в области низких частот, где, как правило, отношение сигнал/шум велико, передаточные функции инверсного и винеровского фильтров практически совпадают.

2. При уменьшении спектральной плотности мощности исходного изображения передаточная функция фильтра Винера стремится к нулю. Для изображений это характерно на верхних частотах.

3. На частотах, соответствующих нулям передаточной функции формирующей системы, передаточная функция фильтра Винера также равна нулю. Таким образом решается проблема сингулярности восстанавливающего фильтра.

На рис. 4.18 приведены  одномерные сечения типичных передаточных функций винеровских фильтров (сплошная линия). Здесь же для сравнения приведены сечения передаточных функций инверсных фильтров (4.15) и (4.16), которые обозначены штриховой линией.

Рис.4.18. Частотный характеристики фильтра Винера при цилиндрической и гауссовской ФРТ

Рассмотрим результаты моделирования винеровского алгоритма восстановления. На рис. 4.19.а и 4.21.а приведены результаты искажения изображений «Сатурн» и «Часы» сверткой с гауссовской ФРТ  (  ) с последующим «обрезанием» краев и добавлением аддитивного дельта-коррелированного шума (). На рис. 4.20.а и 4.22.б приведены изображения, полученные в результате смаза () изображений «Сатурн» (рис. 4.6) и «Часы» (рис. 4.22.а) () также с последующим «обрезанием» краев и добавлением аддитивного дельта-коррелированного шума ().

а)

б)

Рис.4.19. Восстановление дефокусированного изображения “Сатурн” при

а)

б)

Рис.4.20. Восстановление смазанного изображения “Сатурн” при

Размеры всех наблюдаемых и восстановленных изображений равны  элементов. Результаты восстановления винеровским фильтром изображения «Сатурн» (рис. 4.19.б и рис.4.20.б) свидетельствуют о том, что фильтр Винера значительно лучше подавляет шумы. Осциллирующая помеха на результатах восстановления изображения «Часы» (рис. 4.21.б и рис.4.22.в) вызвана краевыми эффектами. Очевидно, что ее уровень существенно меньше, чем при инверсной фильтрации (см. рис.4.13.в). Однако винеровский фильтр лишь частично компенсирует краевые эффекты, которые делают качество восстановления неудовлетворительным.

а)

б)

Рис.4.21. Восстановление дефокусированного изображения “Часы” при

а)

б)

в)

Рис.4.22. Восстановление смазанного изображения “Часы” при

Таким образом, за счет использования информации о спектральных характеристиках изображения и шума, фильтр Винера обладает относительно высокой помехоустойчивостью и у него отсутствует сингулярность, обусловленная нулями передаточной функции формирующей системы. Основным недостатком фильтра Винера остается наличие краевых эффектов, которые проявляются в виде осциллирующей помехи, маскирующей восстановленное изображение.

 



<< ПредыдущаяОглавлениеСледующая >>