Читать в оригинале

<< Предыдущая Оглавление Следующая >>


4.3.3. Компенсация краевых эффектов при восстановлении линейно-искаженных изображений

На восстановленных изображениях, приведенных на рис.4.13.в, 4.21.б и 4.22.в, присутствует осциллирующая помеха большой интенсивности, которая возникает из-за того, что инверсный фильтр и фильтр Винера были синтезированы без учета ограниченных размеров наблюдаемых изображений. Вследствие того, что искаженное изображение записывается в кадре конечного размера, в усеченном изображении происходит потеря информации, содержащейся в исходном изображении вблизи границ. Поэтому при коррекции линейных искажений усеченного изображения возникают ложные детали в виде ряби или полос, интенсивность которых особенно велика при цилиндрической форме ФРТ и равномерном смазе.

К сожалению, решить уравнение Винера-Хопфа для сигналов и изображений, наблюдаемых на ограниченном интервале, не удается. Поэтому отсутствуют оптимальные пространственно-инвариантные фильтры, учитывающие краевые эффекты. Для компенсации краевых эффектов используются различные эвристические алгоритмы. Некоторые из них будут рассмотрены в данном подразделе.

Если нас интересует центральная часть изображения и его размеры значительно больше размеров кадра ФРТ, то для компенсации краевых эффектов применяют умножение наблюдаемого изображения на функцию окна , которая плавно уменьшается до нуля на краях кадра  наблюдаемого изображения и равны нулю всюду за его пределами. После этого изображение восстанавливается фильтром Винера.

При дефокусировке функция окна является разделимой относительно пространственных координат: . При вертикальном или горизонтальном смазе используется одномерная функция окна, на которую умножаются соответственно столбцы или строки наблюдаемого изображения. Известно много одномерных функций окна , которые могут быть использованы при восстановлении изображений, например, окна Бартлетта, Кайзера, Блэкмана и др [4.7].

Хорошие результаты дает функция окна [4.8]

,       (4.30)

форма которой определяется двумя независимыми параметрами   и . Параметр  влияет на размеры окна, а   - на скорость спада краев окна к нулю.

 На рис 4.23 и 4.24 приведены результаты восстановления изображения «Часы» при горизонтальном смазе, где а - результаты умножения строк искаженного изображения, приведенного на рис.4.22.б, на окно Кайзера и окно (4.30); б - результаты восстановления фильтром Винера. Параметры окон подбирались, исходя из визуального качества восстанавливаемых изображений.

Уровень яркости на краях изображений, умноженных на окно, стремится к нулю, поэтому вместе с уменьшением краевых эффектов сужаются границы восстанавливаемого изображения. Кроме того, оптимальные параметры окон зависят от параметров искажающей системы и определяются опытным путем, что затрудняет практическое применение алгоритмов восстановления.

Учесть ограниченные размеры наблюдаемого изображения  можно на этапе синтеза фильтра Винера, который использует информацию о спектрально-корреляционных характеристиках изображения. Получение изображения ограниченных размеров эквивалентно умножению бесконечного изображения на окно единичной яркости, размеры которого равны размерам кадра . Очевидно, что спектрально-корреляционные характеристики такого усеченного изображения будут отличаться от аналогичных характеристик бесконечных изображений. Корреляционная функция усеченного изображения может быть получена путем умножения на окно  

а)

б)

Рис. 4.23. Восстановление с использованием окна Кайзера

а)

б)

Рис. 4.24. Восстановление с использованием окна (4.30)

       (4.31)

корреляционной функции неограниченного изображения [4.9]. В этом случае спектральная плотность мощности усеченного изображения равна свертке спектральной плотности мощности неограниченного изображения и спектральной плотности окна (4.31). Подставляя соответствующие спектральные плотности мощности в уравнение Винера-Хинчина  и решая его, получим коэффициент передачи фильтра для усеченного изображения [4.10]

 ,          (4.32)

где   - спектральная плотность окна (4.31). Следует подчеркнуть, что импульсная характеристика фильтра (4.32) не сводится к произведению импульсной характеристики фильтра Винера и  регуляризирующего двумерного треугольного окна (4.31).

На рис. 4.25 приведен результат восстановления изображения «Часы» фильтром (4.32), откуда следует, что фильтр (4.32) практически полностью компенсирует краевые эффекты. Это позволяет отказаться от предварительной обработки. Качество восстановления изображения в центре и на краях почти одинаковое. Параметры фильтра (4.32) полностью определяются исходными данными и не требуют дополнительной подстройки. При использовании быстрого преобразования Фурье для обработки изображений объем вычислений при реализации фильтра (4.32) такой же, как и для фильтра Винера (4.28).

Рис.4.25. Результат восстановления с компенсацией краевых эффектов

Иногда наряду с компенсацией краевых эффектов требуется расширить границы восстанавливаемого изображения, чтобы извлечь больший объем информации об исходном изображении. Для этого используется процедура экстраполяции, которая состоит в том, что двумерную функцию яркости  наблюдаемого изображения продолжают с границ кадра  на кадр больших размеров  так, чтобы функция яркости была гладкой и на границах кадра  равнялась нулю.

Простейшей является процедура одномерной экстраполяции. Яркость изображения вдоль строк и столбцов за пределами кадра наблюдаемого изображения  задается в виде полинома

.

Коэффициенты  определяются исходя из требований, предъявляемых к свойствам функции яркости. Например, на границе кадра  функция яркости должна равняться нулю, она должна быть неотрицательной, максимальное значение экстраполирующей функции не должно превышать максимального значения наблюдаемого изображения и т.п. Метод экстраполяции иллюстрируется рис.4.25, где а - экстраполированное изображение; б - результат восстановления. Размер наблюдаемого изображения «Часы» (см. рис. 4.22.б)  равен  элементов, экстраполированного -  элементов. В качестве экстраполирующей функции использовался полином первой степени.

а)

б)

Рис. 4.26. Восстановление с применением экстраполяции

Следует обратить внимание на то, что применение процедуры экстраполяции позволило восстановить изображение в пределах кадра исходного изображения, размеры которого больше размеров кадра наблюдаемого изображения на величину смаза. Очевидно, что в центральной части качество восстановления при экстраполяции хуже, чем при умножении на окно. Однако эта процедура позволяет увеличить размеры кадра восстановленного изображения.

Улучшить качество восстановления можно, используя одновременно экстраполяцию наблюдаемого изображения  и фильтра  (4.32). Результат такой комбинированной процедуры приведен на рис 4.27. Рассмотренные методы восстановления являются линейными. Их широкое использование обусловлено достаточно простыми методами синтеза и анализа линейных систем, а также высокой вычислительной эффективностью. Однако эти методы не являются оптимальными и не всегда обеспечивают эффективную компенсацию искажений. Линейная обработка является лишь приближением к оптимальной обработке, т.к. статистические характеристики подавляющего большинства изображений являются негауссовскими. Кроме того, линейные методы не учитывают  априорные данные о восстанавливаемых изображениях. Поэтому интерес представляют нелинейные методы обработки изображений. Синтез оптимальных нелинейных алгоритмов, как правило, значительно сложнее, чем линейных. Однако существуют линейные  методы восстановления, которые достаточно просто могут быть преобразованы в нелинейные, учитывающие априорные данные об изображениях и помехах. Ярким примером таких методов являются итерационные методы (методы последовательных приближений).

Рис.4.27. Восстановление с использованием экстраполяции и компенсации краевых эффектов

 



<< Предыдущая Оглавление Следующая >>