Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


5.1. Геометрические преобразования на плоскости и в пространстве

Геометрия является математическим базисом для решения многих задач машинного зрения и обработки изображений и содержит множество подобластей. Здесь мы рассмотрим лишь некоторые в охарактеризованном выше контексте привязки, преобразования и совмещения разновременных изображений одного и того же объекта.

При изучении геометрических преобразований плоских изображений (то есть относящихся к двумерному случаю - 2D), будем предполагать, что мы работаем в евклидовом пространстве, где имеется ортонормированная декартова система координат, в которой координатные оси взаимно ортогональны, а соответствующие им единичные отрезки имеют одинаковую длину. Тогда каждой точке изображения ставится в соответствие упорядоченная пара чисел  декартовых координат: их можно интерпретировать как двумерный вектор , геометрически представляемый отрезком прямой линии из точки  в точку .

Двумерные преобразования на плоскости мы будем интерпретировать как движения точек по отношению к фиксированному базису (а не как изменение базиса, оставляющее точки неподвижными).

В частности, нас особенно будут интересовать линейные преобразования, представляемые матрицами, то есть преобразования, при которых новые координаты точки линейно зависят от старых координат этой точки следующим образом:

.                          (5.1)

Линейные преобразования могут быть различного типа, начиная от общего случая произвольных элементов матрицы  вплоть до специальных случаев, когда на элементы матрицы накладываются те или иные ограничения. Интуитивно ясно, что каждому линейному преобразованию (или движению) на плоскости всегда найдется обратное, переводящее точки в первоначальное положение, и любым двум последовательно выполняемым преобразованиям точек плоскости соответствует некоторое третье преобразование, осуществляющее аналогичную (по результату) операцию. В таком случае принято говорить, что множество всех невырожденных линейных преобразований  является замкнутым или, иначе, формирует группу, называемую здесь общей линейной группой. Интересно отметить, что само множество общих линейных преобразований может быть разбито на замкнутые подмножества или подгруппы. Прежде всего, мы рассмотрим матрицы преобразования, связанные с наиболее важными подгруппами общей линейной (или проективной) группы, а именно евклидову подгруппу, а также подгруппы подобия и аффинную. Это является следствием того, что евклидова геометрия (также как и аффинная) в действительности является подмножеством выше упомянутой нами проективной геометрии.

 

 



<< ПредыдущаяОглавлениеСледующая >>