Читать в оригинале

<< Предыдущая Оглавление Следующая >>


5.2. Восстановление изображения в преобразованных координатах

После оценивания параметров геометрического преобразования встает задача собственно геометрической коррекции или, по другому, восстановления изображения в преобразованных координатах.

Будем считать, что заданы два снимка (и ) одной и той же местности, полученные с некоторыми отклонениями точек съемки и условий

Рис.5.7. Вычисленные координаты  (выделены серым тоном), наложенные на исходную дискретную целочисленную решетку

освещенности.  Вследствие этого изображения на снимках отличаются друг от друга геометрическими  искажениями. Будем также считать, что на изображениях выделены сопряженные точки, по которым произведено оценивание параметров геометрического преобразования. Зная коэффициенты линейного (или полиномиального) преобразования, можно вычислить в плоскости корректируемого изображения координаты всех точек , соответствующие точкам с целочисленными координатами на эталонном снимке  (рис.5.7).

Восстановив уровни яркости наблюдаемых элементов в вычисленных точках на корректируемом снимке, то есть осуществив «передискретизацию», полученные значения также можно поместить на дискретном растре размером , приведя тем самым искаженное изображение в формат эталонного снимка . Поскольку координаты не попадают чаще всего в узлы дискретной решетки (см. рис.5.7), то возникает задача восстановления соответствующего значения яркости по ближайшим отсчетам. Она решается с помощью методов двумерной   интерполяции [5.2, разд.5.3].  Интерполированное непрерывное изображение в плоскости снимка можно описать функцией свертки

,                  (5.19)

где  - интерполирующая функция (называемая также интерполяционным ядром), - шаг дискретизации исходного изображения,  - известные отсчеты яркости в точках дискретного растра. Оценка непрерывного изображения позволяет осуществить его передискретизацию на новом множестве точек.

Интерполяционное ядро имеет значительное влияние на численное поведение интерполированных функций. Теоретически оптимальную интерполяцию обеспечивает известная sinc-функция, в одномерном случае имеющая вид

,               (5.20)

где  есть ширина полосы частот . Из теоремы отсчетов следует (см. главу 1), что sinc-функция дает наилучшую реконструкцию , если последняя имела ограниченный спектр и была первоначально оцифрована вблизи частоты Найквиста.

Поскольку интерполяция противоположна дискретизации, то интерполирующая функция (5.20) по существу является идеальным низкочастотным фильтром, вырезающим основной участок ограниченного спектра из множества его повторяющихся копий. Однако этот теоретический метод практически невозможно реализовать в контексте обработки изображений. В частности, ограничение области суммирования в (5.19) приводит к тому, что осцилляции, известные как феномен Гиббса, будут проникать в восстанавливаемый образ . Поэтому на практике используют интерполяционные ядра, реализация которых сопряжена с меньшими трудностями. В одномерном случае это прямоугольные, треугольные, B-сплайн функции и т.п. [5.2, разд.4.3]. При выборе соответствующего ядра  исходят из соображений как необходимой точности интерполяции, так и вычислительной эффективности. Понятно, что здесь одномерные функции должны быть преобразованы в двумерные функции. Общий подход состоит во введении так называемых «сепарабельных» интерполяционных функций в виде произведения двух одномерных функций. Сепарабельность во многих отношениях достаточно привлекательна в приложениях хотя и влечет неизотропность (за исключением гауссовых функций). Однако данные на квадратной решетке дискретизованы также не изотропно.

С вычислительной точки зрения предпочтителен алгоритм, известный как интерполятор по ближайшему соседу, где значение в точке  приписывается равным величине ближайшего отсчета дискретного растра. Этот метод соответствует прямоугольному интерполирующему ядру (рис.5.8). Свертка с прямоугольной функцией в пространственной области эквивалентна умножению сигнала в области частот на sinc-функцию. Последняя является плохим приближением к низкочастотному фильтру, поскольку имеет бесконечное множество боковых лепестков. Алгоритм ближайшего соседа приводит к локальным сдвигам относительно первоначального изображения на величины разностей между вычисленной точкой и ближайшей точкой дискретного растра (то есть вплоть до ).  Треугольное ядро (рис.5.9) в двумерном случае приводит к билинейной интерполяции по четырем ближайшим соседям точки   ,  .

Рис.5.8. Интерполятор по ближайшему соседу с прямоугольным ядром. Справа график модуля Фурье-образа ядра. Пунктирной линией показан идеальный низкочастотный фильтр с частотой среза .

 

Рис.5.9. Линейная интерполяционная функция и модуль ее Фурье-образа (на правом рисунке пунктиром отмечен идеальный низкочастотный фильтр)

Здесь интерполированный сигнал представляется в виде

,                 (5.21)

где

Приближение к низкочастотному фильтру здесь еще далеко от идеального, и к тому же производная интерполированного сигнала терпит разрывы в узлах интерполяции (тем не менее формула (5.21) часто применяется на практике, поскольку удовлетворяет одновременно требованиям приемлемой точности и приемлемым затратам вычислительных ресурсов).

Наиболее подходящим для интерполяции изображений является кубический B-сплайн (рис.5.10), поскольку в результате его применения получается функция, непрерывная и гладкая в узлах интерполяции. Ядро кубической свертки составляется из кусков кубических полиномов, определенных на подинтервалах  (-2,-1), (-1,0), (0,1), (1,2) по каждой из координат. Вне интервала (-2,2) интерполяционное ядро равно нулю. Двумерный кубический B-сплайн может быть записан как произведение двух одномерных интерполяционных функций по каждой из координат

 

где , так что

            (5.22)

и , то есть ядро симметричное.

Как показали непосредственные исследования, кубический B-сплайн имеет тенденцию к сглаживанию передискретизованного изображения по сравнению с его первоначальной копией. Поэтому были предприняты определенные усилия для выбора кубического сплайна, более подходящего задачам обработки изображений. Общий кубический сплайн задается в виде

                (5.23)

Рис.5.10. Кубический B-сплайн и модуль его Фурье-образа.

Имеется несколько естественных ограничений на данное интерполяционное ядро. Так, требуется чтобы значение интерполирующей функции в нуле было равно 1, а в точках с координатами 1 и 2 равно 0. Кроме того, необходимо, чтобы ядро было непрерывным в точках 0 и 1, чтобы наклон в точках 0 и 2 был равен 0, и первая производная была непрерывной. В совокупности это дает семь ограничений, в то время как неизвестных параметров восемь и, следовательно, нужно еще одно условие для однозначного определения интерполяционного ядра. В частности, если интерполяционную функцию привести в соответствие с первыми тремя членами ее разложения в ряд Тейлора, тогда неизвестный параметр должен быть равен (). Для практических задач удобнее все семь коэффициентов определить через неизвестный параметр  и интерполяционное ядро представлять в виде [5.10]:

.             (5.24)

Когда константа отрицательная, ядро (5.24) положительное в интервале от 0 до 1 и отрицательное в интервале от 1 до 2. Когда  возрастает, глубина боковых лепестков в интервале от 1 до 2 также увеличивается. Таким образом, с отрицательным значением свободной константы  интерполяционное ядро имеет вид усеченной sinc-функции. Выяснилось[5.11], что эта функция имеет более предпочтительные высокочастотные свойства, нежели кубический B-сплайн, и было предложено называть данную функцию высокоразрешающим интерполяционным кубическим сплайном.   Варьируя  значением  параметра

в пределах от -1 (рис.5.11.а) до -1/2 (рис.5.11.б), в каждом конкретном случае можно добиться приемлемой точности при передискретизации.

а)

б)

Рис.5.11. Высокоразрешающий интерполяционный кубический сплайн  и его частотная характеристика : a) - a=-1; б) - а= - 0.5

 



<< Предыдущая Оглавление Следующая >>