§ 3. Результаты в случае щели с резкими краямиОт предельного случая вернемся теперь к случаю, когда ширина щели и квантовомеханическое уширение сравнимы по их величине, а времена и расстояния не слишком велики. Мы уже видели, что гауссова щель приводит к гауссову распределению. Если использовать более реальную щель с резкими краями и вычислить возникающие интегралы Френеля, то распределение вероятности спустя время Фиг. 3.6. Распределение электронов после прохождения щелей с резкими краями и различной шириной. В каждом случае вертикальной пунктирной линией показана предсказываемая классической теорией ширина распределения Это распределение выражается формулой
где
а Таким образом, результаты для обеих щелей в общих чертах одинаковы. С наибольшей вероятностью частица находится внутри классической проекции щели. Все, что вне ее - результат квантовомеханического уширения. Движение частицы сквозь щель рассматривалось нами так, как если бы оно состояло из двух отдельных движений: сначала частица движется к щели, а затем от щели до точки наблюдения. В области щели движение как бы расчленяется. Может возникнуть вопрос, как при таком «разделяющемся на части» движении частица «помнит» свою скорость и в основном сохраняет направление движения, предписываемое классической физикой? Или, другими словами, каким образом уменьшение ширины щели вызывает «потерю памяти», до тех пор пока в пределе все скорости частицы не станут равновероятными? Чтобы понять это, исследуем амплитуду, описывающую движение к щели. Она в точности равна амплитуде вероятности для свободной частицы, определяемой выражением (3.3), где Если на ширине щели укладывается большое число волн, т. е. щель очень широкая, то в результате интерференции возникает довольно острый пик и движение становится почти классическим. Предположим, однако, что щель сделана чрезвычайно узкой и на ее ширине не укладывается даже одна волна. Тогда не будет никаких осцилляций, которые приводили бы к интерференции, и информация о скорости частицы теряется. Поэтому в пределе, когда ширина щели стремится к нулю, все скорости частицы становятся равновероятными.
|