3-14 КОСОУГОЛЬНЫЕ ПРОЕКЦИИВ противоположность ортографическим и аксонометрическим проекциям, для которых проекторы перпендикулярны плоскости проекции, косоугольная проекция формируется параллельными проекторами с центром, лежащим в бесконечности, и расположенными под косым углом к плоскости проекции. Общая схема проекции изображена на рис. 3-20. Косоугольные проекции показывают общую трехмерную форму объекта. Однако истинные размер и форма изображаются только для граней объекта, распложенных параллельно плоскости проекции, т.е. углы и длины сохраняются только для таких граней. В самом деле, косоугольная проекция этих граней эквивалентна ортографическому виду спереди. Грани, не параллельные плоскости проекции, подвергаются искажению. Особый интерес представляют две косоугольные проекции - кавалье и кабине. Проекция кавалье получается, когда угол между проекторами и плоскостью проекции составляет . В этой проекции коэффициенты искажения для всех трех главных направлений одинаковы. Результат этой проекции выглядит неестественно утолщенным. Для «коррекции» этого недостатка используется проекция кабине. Проекцией кабине называется такая косоугольная проекция, у которой коэффициент искажения для ребер, перпендикулярных плоскости проекции, равен 1/2. Как будет показано ниже, для проекции кабине угол между проекторами и плоскостью проекции составляет . Рис. 3-20 Косоугольная проекция. Рис. 3-21 Построение косоугольной проекции. Чтобы построить матрицу преобразования для косоугольной проекции, рассмотрим единичный вектор вдоль оси , показанный на рис. 3-21. Для ортографической или аксонометрической проекции на плоскость вектор задает направление проекции. При косоугольной проекции проекторы составляют угол с плоскостью проекции. На рис. 3-21 показаны типичные косоугольные проекторы и . Проекторы и образуют угол с плоскостью проекции . Заметим, что все возможные проекторы, проходящие через точку или и образующие угол с плоскостью , лежат на поверхности конуса с вершиной в или . Таким образом, для заданного угла существует бесконечное количество косоугольных проекций. Проектор можно получить из с помощью переноса на точки в точку . В двумерной плоскости, проходящей через перпендикулярно оси , -матрица преобразования равна . В трехмерном пространстве это двумерное преобразование эквивалентно сдвигу вектора в направлениях и . Для этого необходимо преобразование . Проецирование на плоскость дает . Из рис. 3-21 получаем, что , , где - длина спроецированного единичного вектора на оси , т.е. коэффициент искажения, а - угол между горизонталью и спроецированной осью . Из рис. 3-21 также ясно, что - угол между косыми проекторами и плоскостью проекции равен . (3-43) Таким образом, преобразование для косоугольной проекции имеет вид: . (3-44) При , получаем ортографическую проекцию. Если , то не подвергаются искажению ребра, перпендикулярные плоскости проекции. А это является условием проекции кавалье. Из равенства (3-43) имеем: . Заметим, что в проекции кавалье является все еще свободным параметром. На рис. 3-22 показаны проекции кавалье для некоторых значений . Наиболее часто используются значения , равные и . Также применяется значение . Проекцию кабине можно получить при коэффициенте искажения . Отсюда . В этом случае снова угол является переменной величиной, как это показано на рис. 3.23. Наиболее часто встречаются значения и , применяется также значение . Рис. 3-22 Проекции кавалье. Сверху вниз угол изменяется от до с интервалом , угол . Рис. 3-23 Проекции кабине. Сверху вниз угол изменяется от до с интервалом , коэффициент искажения . Рис. 3-24 Косоугольные проекции. Слева направо при . Рис. 3-25 Искажение, возникающее в косоугольных проекциях, , . (а) Круглая грань параллельна плоскости проекции; (b) круглая грань перпендикулярна плоскости проекции; (с) длинная сторона перпендикулярна плоскости проекции; (d) длинная сторона параллельна плоскости проекции. На рис. 3-24 изображены косоугольные проекции для коэффициентов искажения с углом . Поскольку изображается истинная форма одной грани, косоугольные проекции особенно подходят для иллюстрации объектов с круглыми или иными искривленными гранями. Такие грани должны быть параллельны плоскости проекции, чтобы избежать нежелательных искажений. Так же, как и в случае параллельных проекций, объекты с одним измерением, существенно превосходящим другие, подвергаются значительному искажению, если только это измерение не параллельно плоскости проекции. Такие эффекты показаны на рис. 3-25. Ниже приводится подробный пример.
|