§ 132. Невесомость и перегрузкиРассмотрим системы отсчета, связанные с телами, на которые действуют только силы тяготения. Такой системой является, например, корпус искусственного спутника. Вначале, однако, рассмотрим более простой пример. Представим себе, что трос, на котором висит кабина лифта, оборвался, и кабина начала падать с ускорением Совершенно такая же картина невесомости будет наблюдаться и в искусственном спутнике, движущемся по орбите. Ведь движение спутника, как мы видели (§ 125), есть также свободное падение с ускорением, создаваемым силой тяжести; поэтому для любого тела в спутнике, с точки зрения находящегося в нем наблюдателя, сумма сил тяготения и сил инерции будет равна нулю. Внутри кабины нельзя определить, где «верх» и где «низ»; тела не падают на пол, а «плавают» в воздухе; для того чтобы удерживать в руке тело даже большой массы, не требуется никаких усилий, и т. д. С точки же зрения наблюдателя, находящегося в инерциальной системе отсчета, космонавт не обнаруживает ускорений тел, находящихся в кабине, в том числе и своего тела, относительно стенок кабины, потому, что как кабина, так и все тела в ней, и он сам в том числе, «падают», т. е. имеют одинаковое ускорение Если космонавт попытается массивному телу, которое «плавает» в воздухе, сообщить толчком большую скорость, то он убедится, что для этого нужно приложить вполне ощутимую силу. Эту силу можно вычислить по второму закону Ньютона как произведение массы тела на его ускорение относительно кабины. В состоянии невесомости массивное тело перестает давить на руку, которая удерживает его в определенном положении, но вовсе не перестает давить на руку, сообщающую ему ускорение. Если массивному телу сообщена значительная начальная скорость, то оно будет продолжать двигаться с той же скоростью прямолинейно, пока не наткнется на стенку кабины, и если стенка выдержит этот удар, то тело отразится от стенки и начнет двигаться в обратном направлении с той же скоростью. Словом, космонавт не обнаружит никаких отклонений от законов механики, но обнаружит отсутствие тех явлений, которые обусловлены действием сил земного тяготения. Поэтому в состоянии невесомости у космонавта отсутствуют привычные явления, вызываемые силой тяжести (например, постоянное напряжение некоторых мышц, деформации внутренних органов и т. п.), к которым организм приспособился в процессе эволюции. Все сказанное о состоянии невесомости относится к тому случаю, когда на космический корабль действуют только силы тяготения. Если же на него действует еще и сила тяги реактивных двигателей, то состояние невесомости нарушается. Например, на «активном участке» траектории, когда двигатели работают, разгоняя ракету до требуемой скорости, поднимая ее вертикально вверх, сила инерции направлена вертикально вниз и для тела массы Состояние перегрузки действует на организм космонавта значительно сильнее, чем состояние невесомости, но при полетах в космосе оно длится гораздо меньшее время — время работы двигателей. Для того чтобы космонавт легче переносил перегрузки, принимают специальные меры: космонавт располагается лежа в специальном кресле так, чтобы его возросший вес распределялся по возможно большей площади и не изменял условий кровообращения. Перегрузки легко объяснить и с точки зрения «инерциального наблюдателя». С этой точки зрения силы инерции отсутствуют, но, помимо сил тяготения, к космическому кораблю и к каждому из тел, в нем находящихся, приложены силы, действующие при непосредственном соприкосновении и сообщающие всем этим телам данное ускорение. Мы видели (§119), что в этом случае ускоряемые тела оказываются деформированными, и, значит, между их частями действуют силы упругости такие же, какие действовали бы между ними, если бы тела покоились, и на них действовала бы увеличенная сила тяготения.
|