Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 171. Трехфазный электродвигатель.

Из большого числа типов электродвигателей переменного тока, применяющихся в современной электротехнике, наиболее широко распространенным, удобным и экономичным является двигатель с вращающимся магнитным полем, основанный на применении трехфазного тока.

Чтобы понять основную идею, лежащую в основе конструкции этих двигателей, вернемся снова к опыту, изображенному на рис. 264. Мы видели там, что металлическое кольцо, помещенное во вращающееся магнитное поле, приходит во вращение в ту же сторону, в какую вращается поле. Причиной этого вращения является то обстоятельство, что при вращении поля изменяется магнитный поток через кольцо и при этом в кольце индуцируются токи, на которые поле действует с уже знакомыми нам силами, создающими вращающий момент.

При наличии трехфазного тока, т. е. системы трех токов, сдвинутых по фазе друг относительно друга на  (треть периода), очень легко получить вращающееся магнитное поле без механического вращения магнита и без всяких дополнительных устройств. Рис. 351,а показывает, как это осуществляется. Мы имеем здесь три надетые на железные сердечники катушки, расположенные друг относительно друга под углом 120°. Через каждую из этих катушек проходит один из токов системы, составляющей трехфазный ток. В катушках создаются магнитные поля, направления которых отмечены стрелками . Магнитная индукция же каждого из этих полей изменяется с течением времени по тому же синусоидальному закону, что и соответствующий ток (рис. 351,б). Таким образом, магнитное поле в пространстве между катушками представляет собой результат наложения трех переменных магнитных полей, которые, с одной стороны, направлены под углом 120° друг относительно друга, а с другой стороны, смещены по фазе на . Мгновенное значение результирующей магнитной индукции  представляет собой векторную сумму трех составляющих полей в данный момент времени:

.

Если мы теперь станем искать, как изменяется со временем результирующая магнитная индукция , то расчет показывает, что по модулю магнитная индукция результирующего поля не изменяется ( сохраняет постоянное значение), но направление вектора  равномерно поворачивается, описывая полный оборот за время одного периода тока.

433.jpg

Рис. 351. Получение вращающегося магнитного поля при сложении трех синусоидальных полей, направленных под углом 120° друг относительно друга и смещенных по фазе на : а) расположение катушек, создающих вращающееся поле; б) график изменения индукции полей со временем; в) результирующая индукция  постоянна по модулю и за  периода поворачивается на  окружности

Не входя в подробности расчета, поясним, каким образом сложение трех полей  дает постоянное по модулю вращающееся поле. На рис. 351,б стрелками отмечены значения магнитной индукции трех полей в момент , когда , в момент , когда , и в момент , когда , а на рис. 351,в выполнено сложение по правилу параллелограмма магнитных индукций  и  в эти три момента, причем направления стрелок  и ,  и ,  и  соответствуют рис. 351,а. Мы видим, что результирующая магнитная индукция  имеет во все три указанных момента один и тот же модуль, но направление ее поворачивается за каждую треть периода на одну треть окружности.

Если в такое вращающееся поле поместить металлическое кольцо (или, еще лучше, катушку), то в нем будут индуцироваться токи так же, как если бы кольцо (катушка) вращалось в неподвижном поле. Взаимодействие магнитного поля с этими токами и создает силы, приводящие во вращение кольцо (катушку). В этом заключается основная идея трехфазного двигателя с вращающимся полем, впервые осуществленного М. О. Доливо-Добровольским.

Устройство такого двигателя ясно из рис. 352. Его неподвижная часть – статор – представляет собой собранный из листовой стали цилиндр, на внутренней поверхности которого имеются пазы, параллельные оси цилиндра. В эти пазы укладываются провода, соединяющиеся между собой по торцовым сторонам статора так, что они образуют три повернутые друг относительно друга на 120° катушки, о которых шла речь в предыдущем параграфе. Начала этих катушек 1, 2, 3 и концы их 1', 2', 3' присоединены к шести зажимам, находящимся на щитке, укрепленном на станине машины. Расположение зажимов показано на рис. 353.

435-1.jpg

Рис. 352. Трехфазный двигатель переменного тока в разобранном виде: 1 – статор, 2 – ротор, 3 – подшипниковые щитки, 4 – вентиляторы, 5 – вентиляционные отверстия

435-2.jpg

Рис. 353. Расположение зажимов на щитке двигателя

Внутри статора помещается вращающаяся часть двигателя – его ротор. Это – также набранный из отдельных листов стали цилиндр, укрепленный на валу, вместе с которым он может вращаться в подшипниках, находящихся в боковых щитках (крышках) двигателя. На краях этого цилиндра имеются вентиляционные лопасти, которые при вращении ротора создают в двигателе сильную струю воздуха, охлаждающую его. На цилиндрической поверхности ротора, в пазах, параллельных его оси, расположен ряд проводов, соединенных кольцами на торцах цилиндра. Такой ротор, изображенный отдельно на рис. 354, носит название «короткозамкнутого» (иногда его называют «беличьим колесом»). Он приходит во вращение, когда в пространстве внутри статора возникает вращающееся магнитное поле.

435-3.jpg

Рис. 354. Короткозамкнутый ротор трехфазного двигателя

Вращающееся поле создается трехфазной системой токов, подводимых к обмоткам статора, которые могут быть соединены между собой либо звездой (рис. 355), либо треугольником (рис. 356). В первом случае (§ 170) напряжение на каждой обмотке в  раз меньше линейного напряжения сети, а во втором – равно ему. Если, например, напряжение между каждой парой проводов трехфазной сети (линейное напряжение) равно 220 В, то при соединении обмоток треугольником каждая из них находится под напряжением 220 В, а если они соединены звездой, то каждая обмотка находится под напряжением 127 В.

436.jpg

Рис. 355. Включение обмоток статора звездой: а) схема включения двигателя; б) соединение зажимов на щитке. Зажимы 1', 2', 3' соединены «накоротко» металлическими шинами; к зажимам 1, 2, 3 присоединены провода трехфазной сети

437.jpg

Рис. 356. Включение обмоток статора треугольником: а) схема включения двигателя; б) соединение зажимов на щитке. Металлическими шинами соединены зажимы 1 и 3', 2 и 1', 3 и 2'; к зажимам 1, 2, 3 присоединены провода трехфазной сети

Таким образом, если обмотки двигателя рассчитаны на напряжение 127 В, то двигатель может работать с нормальной мощностью как от сети 220 В при соединении его обмоток звездой, так и от сети 127 В при соединении его обмоток треугольником. На табличке, прикрепленной к станине каждого двигателя, указываются поэтому два напряжения сети, при которых данный двигатель может работать, например 127/220 В или 220/380 В. При включении в сеть с меньшим линейным напряжением обмотки двигателя соединяют треугольником, а при питании от сети с более высоким напряжением их соединяют звездой.

Вращающий момент двигателя создается силами взаимодействия магнитного поля и токов, индуцируемых им в роторе, а сила этих токов (или соответствующая э. д. с.) определяется относительной частотой вращения поля по отношению к ротору, который сам вращается в ту же сторону, что и поле. Поэтому, если бы ротор вращался с той же частотой, что и поле, то никакого относительного движения их не было бы. Тогда ротор находился бы в покое относительно поля и в нем не возникала бы никакая индуцированная э. д. с., т. е. в роторе не было бы тока и не могли бы возникнуть, силы, приводящие его во вращение. Отсюда ясно, что двигатель описываемого типа может работать только при частоте вращения ротора, несколько отличающейся от частоты вращения поля, т. е. от частоты тока. Поэтому такие двигатели в технике принято называть «асинхронными» (от греческого слова «синхронос» – совпадающий или согласованный во времени, частица «а» означает отрицание).

Таким образом, если поле вращается с частотой , а ротор – с частотой , то вращение поля относительно ротора происходит с частотой , и именно этой частотой определяются индуцируемые в роторе э. д. с. и ток.

Величина  называется в технике «скольжением». Она играет очень важную роль во всех расчетах. Обычно скольжение выражается в процентах.

Когда мы включаем в сеть ненагруженный двигатель, то в первые моменты  равно или близко к нулю, частота вращения поля относительно ротора  велика и индуцированная в роторе э. д. с. соответственно также велика – она раз в 20 превосходит ту э. д. с., которая возникает в роторе при работе двигателя с нормальной мощностью. Ток в роторе при этом тоже значительно превосходит нормальный. Двигатель развивает в момент пуска довольно значительный вращающий момент, и так как инерция его сравнительно невелика, то частота вращения ротора быстро нарастает и почти сравнивается с частотой вращения поля, так что относительная частота их становится почти равной нулю и ток в роторе быстро спадает. Для двигателей малой и средней мощности кратковременная перегрузка их при пуске не представляет опасности, при запуске же очень мощных двигателей (десятки и сотни киловатт) применяются специальные пусковые реостаты, ослабляющие ток в обмотке; по мере достижения нормальной частоты вращения ротора эти реостаты постепенно выключают.

По мере того как возрастает нагрузка двигателя, частота вращения ротора несколько уменьшается, частота вращения поля относительно ротора возрастает, и вместе с тем растут ток в роторе и развиваемый двигателем вращающий момент. Однако для изменения мощности двигателя от нуля до нормального значения требуется очень небольшое изменение частоты вращения ротора, примерно до 6 % от максимального значения. Таким образом, асинхронный трехфазный двигатель сохраняет почти постоянную частоту вращения ротора при очень широких колебаниях нагрузки. Регулировать эту частоту в принципе возможно, но соответствующие устройства сложны и неэкономичны и потому на практике применяются очень редко. Если машины, приводимые в действие двигателем, требуют иной частоты вращения, чем этот двигатель дает, то предпочитают применять зубчатые или ременные передачи с различными передаточными числами.

Само собой разумеется, что при возрастании нагрузки двигателя, т. е. отдаваемой им механической мощности, должен возрастать не только ток в роторе, но и ток в статоре для того, чтобы двигатель мог поглощать из сети соответствующую электрическую мощность. Это осуществляется автоматически вследствие того, что ток в роторе также создает в окружающем пространстве свое магнитное поле, воздействующее на обмотки статора и индуцирующее в них некоторую э. д. с. Связь между магнитным потоком ротора и статора, или, как говорят, «реакция якоря», обусловливает изменения тока в статоре и обеспечивает согласование электрической мощности, отбираемой из сети, с механической мощностью, отдаваемой двигателем. Детали этого процесса довольно сложны, и мы в них входить не будем.

Очень важно, однако, помнить, что хотя недогруженный двигатель и отбирает от сети такое количество энергии, которое соответствует совершаемой им работе, но при недогрузке его, когда ток в статоре падает, это обусловлено возрастанием индуктивного сопротивления статора, т. е. уменьшением коэффициента мощности (§ 163), что портит условия эксплуатации сети в целом. Если, например, для работы станка достаточно мощности 3 кВт, а мы установим на нем мотор 10 кВт, то данное предприятие почти не понесет ущерба – мотор все равно возьмет только ту мощность, которая требуется для его работы, плюс потери в самом двигателе. Но такой недогруженный мотор имеет большое индуктивное сопротивление и уменьшает коэффициент мощности сети. Он убыточен с точки зрения народного хозяйства в целом. Чтобы стимулировать борьбу за повышение коэффициента мощности, организации, отпускающие потребителям электроэнергию, применяют систему штрафов за слишком низкий по сравнению с установленной нормой коэффициент мощности и поощрений за его повышение.

Поэтому при работе с двигателями необходимо твердо соблюдать следующие правила:

1. Необходимо всегда подбирать двигатель такой мощности, какую фактически требует приводимая им в действие машина.

2. Если нагрузка двигателя не достигает 40 % нормальной, а обмотки статора включены треугольником, то целесообразно переключить их на звезду. При этом напряжение на обмотках уменьшается в  раз, а намагничивающий ток – почти в три раза. В тех случаях, когда такое переключение приходится производить часто, двигатель включают в сеть при помощи перекидного рубильника по схеме, изображенной на рис. 357. В одном положении рубильника обмотки включены треугольником, в другом - звездой.

440-1.jpg

Рис. 357. Схема переключения обмоток двигателя с треугольника (положение рубильника I, I, I) на звезду (положение рубильника II, II, II)

Для того чтобы изменить направление вращения вала двигателя на обратное, необходимо поменять местами два линейных провода, присоединенных к двигателю. Это легко осуществить при помощи двухполюсного переключателя, как показано на рис. 358. Переводя переключатель из положения I-I в положение II-II, мы меняем направление вращения магнитного поля и вместе с тем направление вращения вала двигателя.

440-2.jpg

Рис. 358. Схема включения для изменения направления вращения трехфазного двигателя

Мы видели, что при наличии в статоре двигателя трех катушек, смещенных друг относительно друга на 120°, магнитное поле вращается с частотой тока, т. е. совершает один оборот за  часть секунды, или 3000 оборотов в минуту. Почти с такой же частотой будет вращаться и вал двигателя. Во многих случаях такая частота вращения является чрезмерно большой. Чтобы уменьшить ее, в статоре двигателя размещают не три катушки, а шесть или двенадцать и соединяют их так, чтобы северные и южные полюсы по окружности статора чередовались. При этом поле поворачивается за каждый период тока только на половину или четверть оборота, т. е. вал машины вращается c частотой около 1500 или 750 оборотов в минуту.

Наконец, еще одно практически важное замечание. При повреждении (пробое) изоляции станины и кожухи электрических машин и трансформаторов оказываются под напряжением относительно Земли. Прикосновение к этим частям машин может при таких условиях быть опасным для людей. Для предупреждения этой опасности следует при напряжениях свыше 150 В относительно Земли заземлять станины и кожухи электрических машин и трансформаторов, т. е. надежно соединять их металлическими проводами или стержнями с Землей. Это выполняется по специальным правилам, которые необходимо строго соблюдать во избежание несчастных случаев.

 



<< ПредыдущаяОглавлениеСледующая >>