Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 10. Крутильные колебания

Важным случаем упругих колебаний являются так называемые крутильные колебания, при которых тело переворачивается туда и обратно около оси, проходящей через его центр тяжести.

Если, например, подвесить на проволоке диск (рис. 18), повернуть его так, чтобы проволока закрутилась, и затем отпустить, то диск начнет раскручиваться, закрутится в обратную сторону и т. д., т. е. будет совершать крутильные колебания. При этом также дважды за период имеет место переход кинетической энергии движущегося диска в потенциальную энергию (энергию деформации) закручивающейся проволоки и обратно. Крутильные колебания нередко имеют место в валах двигателей, в частности в гребных валах теплоходных машин, и при известных условиях, о которых речь будет ниже, могут оказаться очень вредными (§ 15).

Рис. 18. Крутильные колебания диска, подвешенного на проволоке

В ручных и карманных часах нельзя использовать подвесной маятник; в них применяется так называемый балансир (рис. 19) — колесико, к оси которого прикреплена спиральная пружина («волосок»). Балансир периодически поворачивается туда и обратно, причем при этих крутильных колебаниях пружинка изгибается (раскручивается и закручивается) в обе стороны от своего равновесного состояния. Таким образом, балансир представляет собой крутильный маятник.

Рис. 19. Часовой балансир

Для периода крутильных колебаний сохраняют силу те же закономерности, что и для периода любых упругих колебаний: период тем больше, чем меньше жесткость системы и чем больше ее масса (при неизменной форме).

При крутильных колебаниях существенна не только масса тела, но и ее распределение относительно оси вращения. Если, например, мы подвесим на проволоке гантель, состоящую из спицы, на которую симметрично насажены два одинаковых груза  и  (рис. 20), то при раздвигании грузов частота крутильных колебаний будет уменьшаться. Хотя масса гантели остается прежней. Оставляя грузы  и  на прежних местах, но беря их более массивными, мы увидим, что частота тоже делается меньше.

Рис. 20. Крутильные колебания гантели

Крутильные колебания при больших углах закручивания (малых угловых амплитудах) также являются гармоническими. Период их определяется соотношением

,

где  — жесткость системы. Численно жесткость  равна вращающему моменту, дающему поворот на  радиан. Если упругие силы обусловлены закручиванием нити или проволоки, то  - это так называемая крутильная жесткость этих тел. Величина  характеризует распределение массы относительно оси вращения (так называемый момент инерции, играющий во вращательном движения такую же роль, какую играет масса в поступательном движении). Например, для гантели  где  — масса каждого груза, а  — расстояние от грузов до оси вращения.

 



<< ПредыдущаяОглавлениеСледующая >>