Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 17. Форма периодических колебаний и ее связь с гармоническим составом этих колебаний

Можно теперь ответить на вопрос, поставленный в § 5: что означает отсутствие определенной частоты у негармонического периодического колебания периода ?

Согласно теореме Фурье такое периодическое колебание представляет собой набор гармонических колебаний и, следовательно, характеризуется не одной частотой, а набором частот  и т. д., т. е. кратных наиболее низкой (основной) частоте .

Рассмотрим осциллограммы колебаний, имеющих одинаковый период , но различных по своей форме. Пример таких осциллограмм мы имели на рис. 6, где было изображено несколько различных периодических колебаний одного и того же периода. По теореме Фурье каждое из этих колебаний является суммой гармонических колебаний, причем и основная частота , и ее обертоны  и т. д. у всех рассматриваемых периодических колебаний одинаковы, так как одинаков период .

Но если частоты гармоник одни и те же, то с чем связано различие формы наших периодических колебаний?

Попробуем выяснить этот вопрос на примерах сложения гармонических колебаний. Это сложение осуществляется по общим правилам сложения движений (см. том I, § 6). Если складываемые перемещения происходят вдоль одной прямой, то результирующее перемещение равно алгебраической сумме складываемых перемещений. Отсюда вытекает и графический способ сложения колебании, которым мы будем сейчас пользоваться.

Рис. 30. Сумма гармонического колебания и его первого обертона

На рис. 30 штриховой линией показаны развертки (осциллограммы) двух гармонических колебаний — основного тона и первого обертона. Прямая линия соответствует положению равновесия. В какой-то момент времени, т. е. в какой-то точке  этой прямой линии, имеем отрезки  и , изображающие отклонения от положения равновесия, вызванные каждым из колебаний в этот момент. Сложив эти отрезки, мы получаем отрезок , изображающий результирующее отклонение в точке . Выполнив такое построение для ряда точек на прямой (с учетом знаков отклонений, т. е. плюс — вверх, минус — вниз), соединим концы всех результирующих отрезков линией. Мы получим развертку суммарного колебания (сплошная кривая на рисунке). Оно имеет тот же период, что и основная гармоника, но форма его несинусоидальная.

Попробуем теперь вдвое уменьшить амплитуду обертона. Результат сложения в этом случае показан на рис. 31. На рис. 32 амплитуды обеих гармоник те же, что и на рис. 30, но обертон сдвинут по времени на четверть своего периода. Наконец, на рис. 33 обе гармоники взяты такими же, как на рис. 30, но добавлен еще второй обертон. Во всех случаях результирующие колебания получаются с одним и тем же периодом, но совершенно различными по форме.

Рис. 31. То же, что на рисунке 30, но амплитуда обертона вдвое меньше

Итак, различие формы периодических колебаний связано с тем, сколько гармоник входит в их состав, с какими они входят амплитудами  и фазами.

Рис. 32. То же, что на рисунке 30, но обертон сдвинут на четверть своего периода

Мы брали для простоты всего две или три складываемые гармоники; но формы периодических колебаний могут быть (и чаще всего бывают) такими, что количество обертонов будет очень большим и даже бесконечно большим. При этом для всякой формы периодического колебания каждая его гармоника имеет вполне определенную амплитуду и фазу. Стоит изменить амплитуду или фазу хотя бы одной-единственной гармоники, и форма результирующего периодического колебания в какой-то мере изменится.

Впрочем, очень часто изменения формы колебаний, обусловленные фазами гармоник, т. е. их сдвигами повремени, не играют роли в физическом явлении и поэтому не представляют интереса. Именно так, в частности, обстоит дело по отношению к звуковым колебаниям, к которым мы обратимся в следующих параграфах. В таких случаях нам важно знать лишь частоты и амплитуды гармоник, входящих в состав данного сложного колебания. Набор этих частот и амплитуд называется гармоническим спектром (или просто спектром) данного колебания.

Рис. 33. То же, что на рисунке 30, но добавлен второй обертон

Рис. 34. Периодическое колебание в форме толчков и спектр такого колебания

Спектры можно изображать в виде очень наглядных графиков, откладывая в определенном масштабе по горизонтальной оси частоты (или номера) гармоник, а по вертикали — их амплитуды. На рис. 34 показана осциллограмма колебания, представляющего собой периодические выбросы в одну сторону. Так меняется со временем, например, действующая периодическими толчками сила. В нижней части рисунка показан спектр этого колебания. Положение каждой линии определяет номер соответствующей гармоники и, следовательно, ее частоту, а высота линии — амплитуду этой гармоники.

 



<< Предыдущая Оглавление Следующая >>