§ 7. Динамика колебаний маятникаМаятники, изображенные на рис. 2, представляют собой протяженные тела различной формы и размеров, совершающие колебания около точки подвеса или опоры. Такие системы называются физическими маятниками. В состоянии равновесия, когда центр тяжести находится на вертикали под точкой подвеса (или опоры), сила тяжести уравновешивается (через упругие силы деформированного маятника) реакцией опоры. При отклонении из положения равновесия сила тяжести и упругие силы определяют в каждый момент времени угловое ускорение маятника, т. е. определяют характер его движения (колебания). Мы рассмотрим теперь динамику колебаний подробнее на простейшем примере так называемого математического маятника, который представляет собой грузик малого размера, подвешенный на длинной тонкой нити. В математическом маятнике мы можем пренебречь массой нити и деформацией грузика, т. е. можем считать, что масса маятника сосредоточена в грузике, а упругие силы сосредоточены в нити, которую считают нерастяжимой. Посмотрим теперь, под действием каких сил происходит колебание нашего маятника после того, как он каким-либо способом (толчком, отклонением) выведен из положения равновесия. Когда маятник покоится в положении равновесия, то сила тяжести, действующая на его грузик и направленная вертикально вниз, уравновешивается силой натяжения нити. В отклоненном положении (рис. 15) сила тяжести Рис. 15. Возвращающая сила Итак, как только маятник при своих колебаниях начинает отклоняться от положения равновесия, скажем, вправо, появляется сила Что происходит с энергией маятника при его колебаниях? Два раза в течение периода — при наибольших отклонениях влево и вправо— маятник останавливается, т. е. в эти моменты скорость равна нулю, а значит, равна нулю и кинетическая энергия. Зато именно в эти моменты центр тяжести маятника поднят на наибольшую высоту и, следовательно, потенциальная энергия наибольшая. Наоборот, в моменты прохождения через положение равновесия потенциальная энергия наименьшая, а скорость и кинетическая энергия достигают наибольшего значения. Мы предположим, что силами трения маятника о воздух и трением в точке подвеса можно пренебречь. Тогда по закону сохранения энергии эта наибольшая кинетическая энергия как раз равна избытку потенциальной энергии в положении наибольшего отклонения над потенциальной энергией в положении равновесия. Итак, при колебаниях маятника происходит периодический переход кинетической энергии в потенциальную и обратно, причем период этого процесса вдвое короче периода колебаний самого маятника. Однако полная энергия маятника (сумма потенциальной и кинетической энергий) все время постоянна. Она равна той энергии, которая была сообщена маятнику при пуске, безразлично — в виде ли потенциальной энергии (начальное отклонение) или в виде кинетической (начальный толчок). Так обстоит дело при всяких колебаниях в отсутствие трения или каких-либо иных процессов, отнимающих энергию у колеблющейся системы или сообщающих ей энергию. Именно поэтому амплитуда сохраняется неизменной и определяется начальным отклонением или силой толчка. Те же самые изменения возвращающей силы
|