§ 8. Формула периода математического маятникаПериод колебаний физического маятника зависит от многих обстоятельств: от размеров и формы тела, от расстояния между центром тяжести и точкой подвеса и от распределения массы тела относительно этой точки; поэтому вычисление периода подвешенного тела —довольно сложная задача. Проще обстоит дело для математического маятника. Из наблюдений над подобными маятниками можно установить следующие простые законы. 1. Если, сохраняя одну и ту же длину маятника (расстояние от точки подвеса до центра тяжести груза), подвешивать разные грузы, то период колебаний получится один и тот же, хотя массы грузов сильно различаются. Период математического маятника не зависит от массы груза. 2. Если при пуске маятника отклонять его на разные (но не слишком большие) углы, то он будет колебаться с одним и тем же периодом, хотя и с разными амплитудами. Пока не слишком велики амплитуды, колебания достаточно близки по своей форме к гармоническому (§ 5) и период математического маятника не зависит от амплитуды колебаний. Это свойство называется изохронизмом (от греческих слов «изос» — равный, «хронос» — время). Впервые этот факт был установлен в 1655 г. Галилеем якобы при следующих обстоятельствах. Галилей наблюдал в Пизанском соборе качания паникадила на длинной цепи, которое толкнули при зажигании. В течение богослужения размахи качаний постепенно затухали (§ 11), т. е. амплитуда колебаний уменьшалась, но период оставался одним и тем же. В качестве указателя времени Галилей пользовался собственным пульсом. Выведем теперь формулу для периода колебаний математического маятника. Рис. 16. Колебания маятника в плоскости (а) и движение по конусу (б) При качаниях маятника груз движется ускоренно по дуге Заставим маятник совершать не колебание в одной плоскости, а описывать конус так, чтобы груз двигался по окружности (рис. 16, б). Это движение может быть получено в результате сложения двух независимых колебаний: одного — по-прежнему в плоскости рисунка и другого — в перпендикулярной плоскости. Очевидно, периоды обоих этих плоских колебаний одинаковы, так как любая плоскость качаний ничем не отличается от всякой другой. Следовательно, и период сложного движения — обращения маятника по конусу — будет тот же, что и период качания водной плоскости. Этот вывод можно легко иллюстрировать непосредственным опытом, взяв два одинаковых маятника и сообщив одному из них качание в плоскости, а другому — вращение по конусу. Но период обращения «конического» маятника равен длине описываемой грузом окружности, деленной на скорость:
Если угол отклонения от вертикали невелик (малые амплитуды), то можно считать, что возвращающая сила С другой стороны, из подобия треугольников
Приравняв оба выражения
Наконец, подставив это в выражение периода
Итак, период математического маятника зависит только от ускорения свободного падения Но наш теоретический вывод дает нам больше: он позволяет установить количественную зависимость между периодом маятника, его длиной и ускорением свободного падения. Период математического маятника пропорционален корню квадратному из отношения длины маятника к ускорению свободного падения. Коэффициент пропорциональности равен На зависимости периода маятника от ускорения свободного падения основан очень точный способ определения этого ускорения. Измерив длину маятника Известно (см. том I, §53), что ускорение свободного падения зависит от географической широты места (на полюсе
|