2.4.3. Фазовая (относительно-фазовая) манипуляция сигналовВ настоящее время разработано несколько вариантов двухпозиционной (бинарной) и многопозиционной фазовой манипуляции. В радиосистемах передачи информации наиболее часто применяются двоичная, четырех позиционная и восьми позиционная фазовая манипуляция (ФМн). Данные сигналы обеспечивают высокую скорость передачи, применяются в радиосвязи, в системах фазовой телеграфии, при формировании сложных сигналов. Временные и спектральные характеристики фазоманипулированных сигналов Наиболее простой является бинарная ФМн, при которой изменение фазы несущего колебания происходит скачком в определенные моменты первичного сигнала (рис. 2.25, а) на 0 или 180o; при этом его амплитуда и частота несущей остаются неизменными. ФМн сигнал имеет вид последовательности радиоимпульсов (отрезков гармонических колебаний) с прямоугольной огибающей (рис. 2.19, в) [32, 39]:
где – нормированная функция, принимающая значения -1 и 1, и повторяющая изменения информационного сигнала (рис. 2.19, а); – девиация фазы (максимальное отклонение фазы от начальной). Величина может быть любой, однако, для лучшего различения двух сигналов на приеме целесообразно, чтобы они максимально отличались друг от друга по фазе, т.е. на 180o (). Таким образом, одни из ФМн колебаний будут синфазны с колебаниями несущей, а другие противоположны по фазе на 180o. Такой сигнал можно представить в виде суммы двух АМн сигналов, с противофазными несущими 0o и 180o: . Структурная схема модулятора в этом случае реализуется с помощью двух самостоятельных источников колебаний (генераторов) с разными начальными фазами, выходы которых управляются информационным сигналом с помощью ключа (рис. 2.20). Спектр ФМн колебания находится суммированием спектров колебаний и [21, 32, 39]:
Из формулы следует, что спектр колебаний ФМн в общем случае содержит несущее колебание, верхнюю и нижнюю боковые полосы, состоящие из спектральных составляющих частот . Анализ спектров ФМн сигналов (рис. 2.21) при различных значениях показывает, что при изменении от до происходит перераспределение энергии сигнала между несущим колебанием и боковыми составляющими, а при вся энергия сигнала содержится только в боковых полосах. Из рис. 2.21 следует, что спектр амплитуд ФМн сигнала содержит те же составляющие, что и спектр АМн сигнала, а для скважности составляющая на несущей частоте отсутствует. Амплитуды боковых составляющих ФМн сигнала в 2 раза больше, чем АМн сигнала. Это объясняется наложением 2-х спектров - спектра ФМн сигнала и несущей. На интервале, где колебания синфазны, суммарная амплитуда удваивается, а где фазы противоположны, компенсируется, в результате для нахождения спектра ФМн достаточно определить спектр АМн колебания. Равенство полос частот АМн и ФМн сигнала предполагает также и равенство максимально возможных скоростей модуляции. Большая амплитуда спектральных составляющих ФМн сигнала по сравнению с АМн обусловливает большую помехоустойчивость. При ФМн начальная фаза является информационным параметром, и в алгоритмах работы фазового демодулятора с целью получения сведений о начальной фазе должны формироваться и храниться образцы вариантов передаваемого сигнала, достаточно точно совпадающие с ним по частоте и начальной фазе. Но на приеме нет признаков по которым можно точно установить однозначное соответствие между переданными двоичными символами и образцами сигнала на входе демодулятора, в результате возможно явление так называемой «обратной работы». Неопределенность начальной фазы объясняется с одной стороны тем, что в канале связи к переданной фазе добавляется произвольный и неизвестный фазовый сдвиг. С другой стороны, фаза сигнала всегда приводится к интервалу и сигналы, различающиеся по фазе на , для приемника одинаковы. Данное свойство неоднозначности решения характерно именно для ФМн. При АМн сигнал, прошедший канал связи, также отличается от переданного, однако если на выходе модулятора сигналу с большей амплитудой соответствовал некоторый двоичный символ, то и на входе демодулятора варианту сигнала с большей амплитудой будет соответствовать тот же самый символ – неоднозначность отсутствует. При ЧМн ситуация аналогична. Если одна из двух частот больше другой на выходе модулятора, то после всех преобразований в канале она останется больше и на входе демодулятора. Временные характеристики сигналов с относительной фазовой манипуляцией Неоднозначность характерная для ФМн сигналов, устранена в системах относительно-фазовой манипуляции (ОФМн). У такого метода манипуляции информация заложена не в абсолютном значении начальной фазы, а в разности начальных фаз соседних посылок, которая остается неизменной и на приемной стороне. Для передачи первого двоичного символа в системах с ОФМн необходима одна дополнительная посылка сигнала, передаваемая перед началом передачи информации и играющая роль отсчетной. Процесс формирования сигнала с ОФМн можно свести к случаю формирования сигнала с ФМн путем перекодирования передаваемой двоичной последовательности. Алгоритм перекодировки прост: если обозначить как информационный символ, подлежащий передаче на -м единичном элементе сигнала, то перекодированный в соответствии с правилами ОФМн символ определяется следующим рекуррентным соотношением: . Для получения сигнала с ОФМн достаточно умножить полученный (перекодированный) сигнал на несущее колебание. Структурная схема модулятора для ОФМн (рис. 2.22) содержит генератор несущего колебания, перемножитель (ФМ) и перекодирующее устройство (относительный кодер) состоящий из перемножителя и элемента памяти. Демодулятор сигнала с ОФМн содержит фазовый детектор, состоящий из перемножителя и ФНЧ, на который подается опорное колебание, совпадающее с одним из вариантов принимаемого сигнала. Дальнейшее вычисление разности фаз и определение переданного ПЭС осуществляется перемножением сигналов на выходе детектора, задержанных друг относительно друга на длительность единичного интервала. На рис. 2.23 представлены временные и спектральные диаграммы формирования сигналов ОФМн: а) непериодический информационный сигнал; б) информационный сигнал в относительном коде; в) несущее колебание; г) сигнал ОФМн на выходе модулятора. Алгоритмы демодуляции сигналов с ОФМн в сравнении с ФМн иллюстрируются временными диаграммами на рис. 2.24 и 2.25. На рис. 2.25 представлены временные диаграммы демодуляции сигналов ОФМн и ФМн при однократной ошибке в принятом радиосигнале, в качестве исходного информационного взят сигнал рис. 2.24,а: а) сигнал с ОФМн на выходе модулятора; б) сигнал с ОФМн на входе демодулятора, в принятый сигнал специально введена ошибка для 3 посылки; в) опорное колебание; г) принятый информационный сигнал, на выходе относительного декодера; д) принятый информационный сигнал, на выходе демодулятора; е) принятый информационный сигнал, на выходе демодулятора в случае отсутствия ошибки.
Случай возникновения скачка фазы в опорном колебании представлен на рис. 2.25. При этом в опорное колебание специально введен скачок фазы на 180o между 2 и 3 посылками. Это дает возможность проиллюстрировать появление ошибок в системах с ФМн и ОФМн. В системе с ФМн, после изменения полярности опорного колебания, все последующие символы ошибочные (обратная работа), причем ошибка будет оставаться до следующего скачка фазы опорного колебания. В системе с ОФМн скачкообразное изменение полярности опорного колебания приводит к одиночной ошибке, что и определяет преимущества сигналов с ОФМн.
Однако следует отметить недостатки систем с ОФМн, которые следует учитывать при выборе методов модуляций: необходимость передачи отсчетной посылки в начале сеанса связи; увеличение вероятности ошибки примерно вдвое; появление двойных ошибок в цифровом потоке, что усложняет кодек при использовании корректирующих кодов; сложность построения модема для ОФМн по сравнению с модемом для ФМн. Для реализации системы с ФМн необходима передача специального синхросигнала (маркерного сигнала), соответствующему одному из символов, например 0. Другой путь реализации ФМн – применение специальных кодов с избыточностью, позволяющих обнаруживать ошибки типа инвертирования всех символов. Все это ведет к определенным потерям: энергетическим, скоростным и аппаратурным, и при выборе метода модуляции ФМн или ОФМн необходимо учитывать их достоинства и недостатки.
|