Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


Глава 9. Динамические законы Ньютона

§ 1. Импульс и сила

Открытие законов динамики или законов движения стало одним из наиболее драматических моментов в истории науки. До Ньютона движение различных тел, например планет, представлялось загадкой для ученых, но после открытия Ньютона все вдруг сразу стало понятно. Смогли быть вычислены даже очень слабые отклонения от законов Кеплера, обусловленные влиянием других планет. Движение маятника, колебания груза, подвешенного на пружине, и другие непонятные до того явления раскрыли свои загадки благодаря законам Ньютона. То же самое можно сказать и об этой главе. До нее вы не могли рассчитать, как движется грузик, прикрепленный к пружине, не говоря уже о том, чтобы определить влияние Юпитера и Сатурна на движение Урана. Но после этой главы вам будет доступно и то и другое!

Первый большой шаг в понимании движения был сделан Галилеем, когда он открыл свой принцип инерции: тело, предоставленное самому себе, если на него не действует никакая сила, сохраняет свое прямолинейное движение с постоянной скоростью, как двигалось до этого, или остается в покое, если оно до этого покоилось. Конечно, в природе такого не бывает. Попробуйте толкнуть кубик, стоящий на столе. Он остановится. Причина в том, что кубик трется о стол, он не предоставлен самому себе. Нужно иметь очень богатое воображение, чтобы увидеть за этим принцип инерции.

Естественно нужно еще разрешить следующий вопрос: а как изменяется скорость тела, если па него что-то действует? Ответ был дан Ньютоном. Он сформулировал три закона. Первый закон представляет собой просто повторение принципа инерции Галилея. Второй закон говорит о том, как изменяется скорость тела, когда оно испытывает различные влияния, т. е. когда на него действуют силы. Третий закон в каком-то смысле описывает силы, но о нем мы поговорим несколько позже. Здесь будет идти речь о Втором законе, согласно которому под действием силы движение тел изменяется следующим образом: скорость изменения со временем некой величины, называемой количеством движения, или импульсом, пропорциональна силе. Позднее мы запишем короткую математическую формулировку этого закона, а сейчас давайте разберемся в его содержании.

Импульс и скорость — вещи разные. В физике употребляется много слов, и каждое из них в отличие от обычного разговорного языка имеет точный смысл. Примером может служить слово «импульс», и мы должны определить его точно. Толкните слегка рукой какой-нибудь легкий предмет — он тотчас начнет двигаться. Если с такой же силой толкнуть гораздо более тяжелый предмет, то он будет двигаться значительно медленней. В сущности нужно говорить не о «легком» или «тяжелом» предмете, а о менее массивном или более массивном, так как между весом и инерцией предмета есть разница, которую нужно понимать. (Сколько весит тело — это одно, а насколько трудно разогнать его — совсем другое.) Однако на поверхности Земли вес и инерция пропорциональны друг другу и зачастую рассматриваются как численно равные. Это часто приводит к непониманию разницы между ними. На Марсе, например, вес предметов будет отличаться от веса на Земле, но инертность останется той же самой, т. е. потребуется то же количество силы, чтобы преодолеть инерцию тела.

Количественной мерой инертности является масса. Ее можно измерять так: просто привязать предмет на веревочке, крутить его с определенной скоростью и измерять ту силу, которая необходима, чтобы удержать его. Этим способом можно измерять массу любых предметов. Импульс — это просто произведение массы тела на его скорость. Теперь можно записать Второй закон Ньютона в математической форме:

.                                                    (9.1)

Давайте разберем подробнее некоторые его стороны. При написании закона, подобного этому, обычно используется много интуитивных идей; что-то подразумевается, что-то предполагается и комбинируется в приближенный «закон». Но после этого необходимо снова вернуться назад и подробно изучить, что означает каждый член. Если же пытаться сделать это с самого начала, то можно безнадежно запутаться. Так что мы считаем некоторые положения само собой разумеющимися и не требующими никакого доказательства. Во-первых, мы считаем, что массы тел постоянны. Это, вообще говоря, неправильно, но мы начнем с ньютоновского приближения, когда масса считается постоянной и не изменяющейся с течением времени. Во-вторых, если сложить вместе два предмета, то масса образовавшегося тела равна сумме их масс. Это положение неявно предполагалось Ньютоном, когда он писал свои уравнения, в противном случае они были бы бессмысленны. Пусть, например, масса изменяется обратно пропорционально скорости, но тогда импульс никогда бы не изменялся и закон потерял бы всякое содержание, за исключением только того, что вы знаете, как изменяется масса со скоростью. Так что сначала мы считаем массу неизменной.

Несколько слов о силе. В качестве первого грубого приближения мы рассматривали силу как некий толчок или тягу, которая может быть произведена с помощью наших мышц, но теперь, пользуясь уравнением движения, мы можем определить ее более точно. Очень важно помнить, что закон Ньютона включает не только изменение величины импульса, но и изменение его направления. Итак, если масса постоянна, то уравнение (9.1) можно записать в виде

,                                                           (9.2)

где  — ускорение, т. е. «скорость изменения скорости». Второй закон Ньютона означает не только то, что изменения, вызванные данной силой, обратно пропорциональны массе, но и то, что направление изменения скорости совпадает с направлением действия силы. Важно понимать, что термин «ускорение» имеет в физике более широкий смысл, чем в обычной разговорной речи. Он означает не только увеличение скорости, но и замедление ( в этом случае мы говорим, что ускорение отрицательно), и перемену направления движения. В гл. 7 мы уже познакомились с ускорением, направленным под прямым углом к скорости, и мы видели, что предмет, движущийся по окружности радиусом  со скоростью , за малый интервал времени  уклоняется от своего прямого пути на расстояние . Так что в этом случае ускорение направлено под прямым углом к направлению движения и равно

.                                                            (9.3)

Таким образом, сила, действующая под прямым углом к скорости, вызывает искривление пути, причем радиус кривизны можно найти, деля силу на массу тела (при этом мы получаем ускорение) и используя затем формулу (9.3).

Фигура 9.1 Малое перемещение тела.

Термин «скорость» тоже имеет в физике более широкий смысл» чем в обыденной жизни. Это не просто некоторое количество метров в секунду, т. е. абсолютная величина скорости, но и направление перемещения в каждый момент времени. Математически мы можем описать и величину, и направление скорости, если будем задавать изменение координат тела с течением времени. Пусть, например, в некоторый момент тело движется так, как это показано на фиг. 9.1. Тогда за малый промежуток времени  оно пройдет некоторое расстояние  в направлении оси ,  в направлении оси  и , в направлении оси . Результатом же этих изменений координат будет перемещение  вдоль диагонали параллелепипеда со сторонами  которые следующим образом связаны с составляющими скорости и интервалом:

.                                         (9.4)

 



<< ПредыдущаяОглавлениеСледующая >>