Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 3. Колебания в линейных системах

Давайте вспомним, о чем мы говорили в нескольких последних главах. Физику колебательных движений очень легко затемнить математикой. На самом-то деле здесь физика очень проста, и если на минуту забыть математику, то мы увидим, что понимаем почти все, что происходит в колебательной системе. Во-первых, если мы имеем дело только с пружинкой и грузиком, то легко понять, почему система колеблется - это следствие инерции. Мы оттянули массу вниз, а сила тянет ее назад; наступает момент, когда сила равна нулю, но грузик не может остановиться мгновенно: у него есть импульс, который заставляет его двигаться. Теперь пружинка тянет грузик в другую сторону, грузик начинает двигаться взад и вперед. Итак, если бы не было трения, то, несомненно, получилось бы колебательное движение, и так оно и есть на самом деле. Но достаточно незначительного трения, чтобы размах следующих колебаний стал меньше, чем раньше.

Что случится потом, после многих циклов? Это зависит от характера и величины трения. Предположим, что мы придумали такое устройство, что при изменении амплитуды сила трения оказывается пропорциональной другим силам - инерции и натяжению. Иначе говоря, при малых колебаниях трение слабее, чем при колебаниях с большой амплитудой. Обычно сила трения таким свойством не обладает, так что можно предположить, что в нашем случае действуют силы трения особого рода - силы, пропорциональные скорости; тогда для больших колебаний эти силы будут больше, а для малых - меньше. Если у нас именно такой вид трения, то в конце каждого цикла система будет находиться в тех же условиях, что и в начале цикла, только всего будет меньше. Все силы будут меньше в тех же пропорциях: сила пружинки немного ослабнет, инерциальные эффекты будут меньше. Ведь теперь и ускорения грузика будут меньше, и сила трения ослабеет (об этом мы позаботились, создавая наше устройство). Если бы мы имели дело с такими силами трения, то увидели бы, что каждое колебание в точности повторяет первое, только амплитуда его стала меньше. Если после первого цикла амплитуда составляла, например, 90% первоначальной, то после второго цикла она будет равна 90% от 90% и т. д., т. е. размах колебаний после каждого цикла уменьшается в одинаковое число раз. Кривая, ведущая себя таким образом, - это экспоненциальная функция. Она изменяется в одинаковое число раз на любых интервалах одинаковой длины. Иначе говоря, если отношение амплитуды одного цикла к амплитуде предыдущего равно , то такое же отношение для второго цикла равно , затем  и т. д. Таким образом, амплитуда колебаний после  циклов равна

.                   (25.10)

Но, конечно, , поэтому общее решение будет произведением какой-нибудь периодической функции  или  на амплитуду, которая ведет себя примерно как . Если  положительно и меньше единицы, то его можно записать в виде . Вот почему решение задачи о колебаниях при учете трения будет выглядеть примерно как . Это очень просто.

Что случится, если трение не будет таким искусственным; например обычное трение о стол, когда сила трения постоянна по величине, не зависит от размаха колебаний и меняет свое направление каждые полпериода? Тогда уравнения движения станут нелинейными; решить их трудно, поэтому придется прибегнуть к описанному в гл. 2 численному решению или рассматривать по отдельности каждую половину периода. Самым мощным, конечно, является численный метод; с его помощью можно решить любое уравнение. Математический анализ используется лишь для решения простых задач.

Надо сказать, что математический анализ вообще не такое уж могучее средство исследования; с его помощью можно решить лишь простейшие возможные уравнения. Как только уравнение чуть усложняется, его уже нельзя решить аналитически. Численный же метод, с которым мы познакомились в начале курса, позволяет решить любое уравнение, представляющее физический интерес.

Пойдем дальше. Что можно сказать о резонансной кривой? Как объяснить резонанс? Представим сначала, что трения нет и мы имеем дело с чем-то, что может колебаться само по себе. Если подталкивать маятник каждый раз, когда он пройдет мимо нас, то очень скоро маятник начнет раскачиваться, как сумасшедший. А что случится, если мы закроем глаза и, не следя за маятником, начнем толкать его с произвольной частотой, с какой захотим? Иногда наши толчки, попадая не в ритм, будут замедлять маятник. Но когда нам посчастливится найти верный темп, каждый толчок будет достигать маятника в нужный момент и он будет подниматься все выше, выше и выше. Таким образом, если не будет трения, то для зависимости амплитуды от частоты внешней силы мы получим кривую, которая выглядит, как сплошная линия на фиг. 25.5. Качественно мы поняли резонансную кривую; чтобы найти ее точные очертания, пожалуй, придется прибегнуть к помощи математики. Кривая стремится к бесконечности, если , где  - собственная частота осциллятора.

161a.gif

Фиг. 25.5. Резонансная кривая, отражающая разнообразные виды трения.

Предположите, что существует слабое трение. Тогда при незначительных отклонениях осциллятора влияние трения сказывается слабо и резонансная кривая вдали от максимума не изменяется. Однако около резонанса кривая уже не уходит в бесконечность, а просто поднимается выше, чем в остальных местах. Когда амплитуда колебаний достигает максимума, работа, совершенная нами в момент толчка, полностью компенсирует потери энергии на трение за период. Таким образом, вершина кривой закруглена, и она уже не уходит в бесконечность. Чем больше трение, тем больше сглажена вершина кривой. Кто-нибудь может сказать: «Я думал, что ширины резонансных кривых зависят от трения». Так можно подумать, потому что резонансные кривые рисуют, принимая за единицу масштаба вершину кривой. Однако если нарисовать все кривые в одном масштабе (это прояснит дело больше, чем изучение математических выражений), то окажется, что трение срезает вершину кривой! Если трение мало, мы можем подняться высоко по резонансной кривой; когда трение сгладит кривую, мы на том же интервале частот поднимаемся на меньшую высоту, и это создает ощущение ширины. Таким образом, чем выше пик кривой, тем ближе к максимуму точки, где высота кривой равна половине максимума.

Наконец, подумаем, что произойдет при очень большом трении. Ясно, что, если трение очень велико, система вообще не осциллирует. Энергии пружинки едва-едва хватит на борьбу с силами трения, и грузик будет медленно ползти к положению равновесия.

 



<< Предыдущая Оглавление Следующая >>