§ 4. Аналогии в физикеПродолжая обзор, заметим, что массы и пружинки - это не единственные линейные системы; есть и другие. В частности, существуют электрические системы (их называют линейными цепями), полностью аналогичные механическим системам. Мы не старались до конца выяснить, почему каждая часть электрической цепи работает так, а не иначе; это нам еще трудно попять. Можно просто поверить, что то или иное поведение каждого элемента цепи можно подтвердить экспериментально. Возьмем для примера простейшее устройство. Приложим к куску проволоки (сопротивлению) разность потенциалов . Это значит, что если от одного конца проволоки до другого проходит заряд , то при этом совершается работа . Чем выше разность потенциалов, тем большая работа совершается при «падении» заряда с высокопотенциального конца проволоки на низкопотенциальный. Заряды, проходя с одного конца проволоки на другой, выделяют энергию. Но зарядам не так-то просто плыть вдоль проволоки: атомы проволоки оказывают сопротивление потоку, и это сопротивление подчиняется закону, справедливому почти для всех обычных материалов: ток пропорционален приложенной к проволоке разности потенциалов. Иначе говоря, число зарядов, проходящих через проволоку за 1 сек, пропорционально силе, с которой их толкают: . (25.11) Коэффициент называют сопротивлением, а само уравнение - законом Ома. Единица сопротивления - Ом; он равен отношению одного вольта (1 в) к одному амперу (1 а). В механических устройствах очень трудно отыскать силу трения, пропорциональную скорости, а в электрических цепях - это дело обычное и закон Ома справедлив для большинства металлов с очень высокой точностью. Нас интересует, много ли совершается работы за 1 сек при прохождении зарядов по проволоке (эту же величину можно назвать потерей мощности или выделяемой зарядами энергией)? Чтобы прогнать заряд через разность потенциалов , надо совершить работу ; таким образом, работа за 1 сек равна , или . Это выражение можно записать иначе: . Эту величину называют тепловыми потерями; вследствие закона сохранения энергии, такое количество теплоты производит в 1 сек сопротивление проволоки. Эта теплота накаляет проволоку электрической лампы. У механических устройств есть, конечно, и другие интересные свойства, например, такие, как масса (инерция). В электрических цепях, оказывается, тоже существуют аналоги инерции. Можно построить прибор, называемый индуктором, а свойство, которым он обладает, носит название индуктивность. Ток, попадающий в такой прибор, не хочет останавливаться. Чтобы изменить ток, к этому прибору нужно приложить разность потенциалов. Если по прибору течет постоянный ток, то падения потенциалов нет. Цени с постоянным током ничего «не знают» об индуктивности; эффекты индуктивности обнаруживаются только при изменениях тока. Описывающее эти эффекты уравнение гласит: , (25.12) а индуктивность измеряется в единицах, которые называются генри (гн). Приложенная к прибору с индуктивностью в 1 гн разность потенциалов в 1 в изменяет ток на 1 а/сек. Уравнение (25.12), если хотите,- электрический аналог закона Ньютона: соответствует , соответствует , а - скорости! Все последующие уравнения, описывающие обе системы, выводятся одинаково, потому что мы просто можем заменить буквы в уравнении для одной системы и получить уравнение для другой системы; любой вывод, сделанный при изучении одной системы, будет верен и для другой системы. Какое электрическое устройство соответствует пружинке, в которой сила пропорциональна растяжению? Если начать с и заменить на , a на , то получим . Мы уже знаем, что такое устройство существует; более того, это единственный из трех элементов цепи, работу которого мы понимаем. Мы уже знакомились с парой параллельных пластинок и обнаружили, что если зарядить пластинки равными, но противоположными по знаку зарядами, то поле между пластинками будет пропорционально величине заряда. Работа, совершаемая при переносе единичного заряда через щель от одной пластинки к другой, прямо пропорциональна заряду пластинок. Эта работа служит определением разности потенциалов и равна линейному интегралу электрического поля от одной пластинки к другой. По исторически сложившимся причинам постоянную пропорциональности называют не , а , т. е. . (25.13) Единица емкости называется фарадой (ф); заряд в 1 кулон, помещенный на каждой пластинке конденсатора емкостью в 1 ф, создает разность потенциалов в 1 в. Вот все нужные аналогии. Теперь можно, заменив на , на и т. д., написать уравнение для резонансной цепи , (25.14) . (25.15) Все, что мы знаем об уравнении (25.14), можно применить и к уравнению (25.15). Переносится каждое следствие; аналогов так много, что с их помощью можно сделать замечательные вещи. Предположим, что мы натолкнулись на очень сложную механическую систему: имеется не одна масса на пружинке, а много масс на многих пружинках, и все это перепутано. Что нам делать? Решать уравнения? Можно и так. Но попробуем собрать электрическую цепь, которая будет описываться теми же уравнениями, что и механическое устройство! Если мы собрались анализировать движение массы на пружинке, почему бы нам не собрать цепь, в которой индуктивность пропорциональна массе, сопротивление пропорционально , пропорционально ? Тогда электрическая цепь, конечно, будет точным аналогом механического устройства в том смысле, что любой отклик на ( соответствует действующей силе) в точности соответствует отклику на силу! Перепутав в цепи великое множество сопротивлений, индуктивностей и емкостей, можно получить цепь, имитирующую сложнейшую механическую систему. Что в этом хорошего? Каждая задача, механическая или электрическая, столь же трудна (или легка), как и другая: ведь они в точности эквивалентны. Открытие электричества не помогло решить математические уравнения, но дело в том, что всегда легче собрать электрическую цепь и изменять ее параметры. Предположим, что мы построили автомобиль и хотим узнать, сильно ли его будет трясти на ухабах. Соберем электрическую цепь, в которой индуктивности скажут нам об инерции колес, об упругости колес представление дадут емкости, сопротивления заменят амортизаторы и т. д. В конце концов мы заменим элементами цепи все части автомобиля. Теперь дело за ухабами. Хорошо, подадим на схему напряжение от генератора - он сможет изобразить любой ухаб; измеряя заряд на соответствующем конденсаторе, мы получаем представление о раскачке колеса. Измерив заряд (это сделать легко), мы решим, что автомобиль трясет слишком сильно. Надо что-то сделать. То ли ослабить амортизаторы, то ли усилить их. Неужели придется переделывать автомобиль, снова проверять, как его трясет, а потом снова переделывать? Нет! Просто нужно повернуть ручку сопротивления: сопротивление номер 10 - это амортизатор номер 3; так можно усилить амортизацию. Трясет еще сильнее - не страшно, мы ослабим амортизаторы. Все равно трясет. Изменим упругость пружины (ручка номер 17). Так мы всю наладку произведем с помощью электричества, многократным поворотом ручек. Вот вам аналоговая вычислительная машина. Так называют устройства, которые имитируют интересующие нас задачи, описываемые теми же уравнениями, но совсем другой природы. Эти устройства легко построить, на них легко провести измерения, отладить их, и... разобрать!
|