Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 4. Независимые источники

Прежде чем перейти ко второй теме этой главы — рассеянию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника  и  с амплитудами поля  и . Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами  и  (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки наблюдения).

Наблюдаемая интенсивность излучения получается сложением двух комплексных векторов с модулями  и  и фазами  и  (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна

                           (32.14)

Если бы не было перекрестного члена , полная энергия в данном направлении была бы равна сумме энергий , излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет интерференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.

Приведем несколько примеров. Пусть два источника находятся друг от друга на расстоянии  длин волн, что в общем вполне осуществимо. Тогда в некотором фиксированном направлении разность фаз принимает вполне определенное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в маленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.

Итак, усреднение по области, в которой фаза быстро меняется от точки к точке, обращает интерференционный член в нуль.

Другой пример. Предположим, что два источника колеблются и излучают радиоволны независимо друг от друга, т. е. они представляют собой не один осциллятор, питающийся от двух проводов (благодаря чему разность фаз остается постоянной), а именно два независимых источника. И пусть источники не настроены точно на одну и ту же частоту (равенства частот очень трудно достигнуть, если не соединять источники в одной цепи). Именно при этих условиях мы и будем называть источники независимыми. Естественно, что из-за сдвига по частоте фазы источников будут различаться, даже если вначале они и совпадали: одна из фаз начнет опережать другую и очень скоро источники окажутся в противофазе, а при дальнейшем опережении фазы снова сравняются и т. д. Разность фаз источников будет, таким образом, дрейфовать со временем, но при измерениях в течение больших промежутков времени приборы не смогут уследить за ними, так как подъемы и спады интенсивности, похожие на «биения» звука, происходят слишком быстро. Мы должны усреднить по промежутку времени наблюдения, но при этом интерференционный член снова выпадает.

Другими словами, при усреднении по разности фаз интерференционный член обращается в нуль!

Имеется много книг по физике, в которых утверждается, что два различных источника света никогда не интерферируют. Это утверждение не отражает физического закона, а просто характеризует ту чувствительность экспериментальной техники, которая существовала к моменту написания книги. В источнике же света происходит следующее: сначала излучает один атом, затем другой и т. д. Как мы показали выше, атомы излучают последовательность воли за время около , через  какой-то атом высвечивается, его место занимает другой, затем третий и т. д. Поэтому фаза может оставаться постоянной примерно только в течение . При усреднении за промежутки времени, много большие , интерференционный член от двух источников выпадает, так как фазы источников за это время много раз изменятся. Световые ячейки Керра позволяют регистрировать свет с очень большой скоростью, и с их помощью удалось показать, что интерференционный член меняется за время порядка . Но большинство приборов не может регистрировать свет в столь малые интервалы времени и, естественно, не обнаруживает интерференции. Для глаза время усреднения — порядка , поэтому увидеть интерференцию обычных источников совершенно невозможно.

Недавно удалось создать источники света, в которых атомы излучают одновременно, и поэтому можно обойти эффект усреднения. Принцип устройства подобных источников весьма сложен, его можно понять, только зная законы квантовой механики. Называются эти источники лазерами. Частота интерференции испущенного лазером света, т. е. время, в течение которого фаза остается постоянной, много больше . Оно может быть равно сотой, десятой доле секунды и даже целой секунде; с помощью обычных световых ячеек можно определить частоту интерференции между двумя лазерами. Легко также заметить биения при сложении света от двух лазеров. Вне всякого сомнения, скоро станет возможно получать столь медленные биения, что, направив на стенку свет от двух лазеров, можно будет увидеть их невооруженным глазом в виде периодических ослаблений и увеличений яркости пятна!

Еще один пример погашения интерференции представляет собой сложение света не двух, а многих источников. В этом случае  равно квадрату суммы большого числа амплитуд (комплексных чисел), т. е. сумме квадратов плюс перекрестные члены от каждой пары. При определенных условиях перекрестные члены могут погаситься и интерференция исчезнет. Например, когда источники распределены в пространстве случайным образом, тогда разность фаз  и  хотя и постоянна, но значительно отличается от разности фаз  и  и т. д. В результате получается много косинусов — одни из них положительны, другие отрицательны, а в сумме они почти целиком сокращаются.

Вот почему во многих случаях мы не замечаем эффекта интерференции, а полная интенсивность оказывается равной сумме всех интенсивностей всех источников.

 



<< Предыдущая Оглавление Следующая >>