Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 4. Применения принципа Ферма

Рассмотрим теперь некоторые интересные следствия принципа наименьшего времени. Первое из них — принцип обратимости. Мы уже нашли путь из  в , требующий наименьшего времени; пойдем теперь в обратном направлении (считая, что скорость света не зависит от направления). Наименьшему времени отвечает та же траектория, и, следовательно, если свет распространяется по некоторому пути в одном направлении, он будет двигаться по этому пути и  в обратном направлении.

Другой интересный пример! На пути света под некоторым углом поставлена четырехгранная стеклянная призма с параллельными гранями. Свет проходит из точки  в  и, встретив на своем пути призму (фиг. 26.6), отклоняется, причем длительность пути в призме уменьшается за счет изменения наклона траектории, а путь в воздухе немного удлиняется. Участки траектории вне призмы оказываются параллельными друг другу, потому что углы входа и выхода из призмы одинаковы.

Третье интересное явление состоит в том, что когда мы смотрим на заходящее солнце, то оно на самом деле находится уже ниже линии горизонта! Нам кажется, что солнце еще над горизонтом, а оно фактически уже зашло (фиг. 26.7). Дело здесь в следующем. Земная атмосфера вверху разрежена, а в нижних слоях более плотная. Свет распространяется в воздухе медленнее, чем в вакууме, и поэтому солнечные лучи достигнут какой-то точки за горизонтом быстрее, если будут двигаться не по прямой линии, а по траектории с более крутым наклоном в плотных слоях атмосферы, сокращая таким образом свой путь в этих слоях.

Еще пример того же рода — мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят на дороге «воду», а когда подъезжают туда, то кругом оказывается все сухо, как в пустыне! Сущность явления в следующем. То, что мы видим в этом случае, это «отраженный» дорогой свет. На фиг. 26.8 показано, как падающий на дорогу луч света попадает к нам в глаз. Почему? Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным, а потому и скорость света в нем больше, чем в холодном. Другими словами, свет быстрее проходит в теплых слоях, чем в холодных. Поэтому свет проходит не по прямой, а идет по траектории с наименьшим временем, заворачивал для этого в теплые слои воздуха, чтобы сократить время. Таким образом, свет идет по кривой.

Фигура 26.6. Луч света, выходящий, из прозрачной пластина, параллелен падающему лучу.

Фигура 26.7. У горизонта Солнце кажется на  градуса выше, чем на самом деле

И еще один пример. Представим себе такую ситуацию, когда весь свет, испускаемый в точке , собирается обратно в другую точку  (фиг. 26.9). Это означает, конечно, что свет может попасть из точки  в  по прямой линии. Это правильно. Но как устроить так, чтобы спет, идущий от  к , тоже попал в ? Мы хотим собрать весь свет снова в одной точке, которую называют фокусом. Как это сделать? Поскольку свет всегда выбирает путь с наименьшим временем, то наверняка он не пойдет по другим предложенным нами путям. Единственный способ сделать целый ряд близлежащих траекторий приемлемыми для света — это устроить так, чтобы для всех время прохождения было точно одинаковым. В противном случае свет пойдет по траектории, требующей минимального времени. Поэтому задача построения фокусирующей системы сводится просто к созданию устройства, в котором свет тратит на всех путях одинаковое время!

Фигура 26.8. Мираж

Такое устройство создать просто. Возьмем кусок стекла, в котором свет движется медленнее, чем в воздухе (фиг. 26.10). Проследим путь луча света, проходящего в воздухе по линии . Этот путь длиннее, чем прямо из  в , и наверняка занимает больше времени. По если взять кусок стекла нужной толщины (позже мы вычислим, какой именно), то путь в нем скомпенсирует добавочное время, затрачиваемое при отклонении луча на траектории . При этих условиях можно устроить так, чтобы время, затрачиваемое светом на пути по прямой, совпадало со временем, затрачиваемым на пути . Точно так же, если взять частично отклоненный луч  (более короткий, чем ), то придется скомпенсировать уже не так много времени, как для прямолинейной траектории, но некоторую долю времени все же скомпенсировать придется. В результате мы приходим к форме куска стекла, изображенной на фиг. 26.10. При такой форме весь свет из точки   попадет в . Все это нам известно уже давно, и называется такое устройство собирательной линзой. В следующей главе мы вычислим, какой должна быть форма линзы, чтобы получить идеальную фокусировку.

Фигура 8.9. Оптический «черный ящик»

Наконец, последний пример. Предположим, что нам нужно так поставить зеркало, чтобы свет из точки  всегда приходил в  (фиг. 26.11). На любом пути свет должен отразиться от зеркала, и время для всех путей должно быть одинаковым. В данном случае свет проходит только в воздухе, так что время прохождения пропорционально длине пути. Поэтому требование равенства времен сводится к требованию равенства полных длин путей. Следовательно, сумма расстояний  и  должна оставаться постоянной. Эллипс обладает как раз тем свойством, что сумма расстояний любой точки на его кривой от двух заданных точек постоянна; поэтому свет, отразившись от зеркала, имеющего такую форму, наверняка попадет из одного фокуса в другой.

Этот принцип фокусировки служит для наблюдения света звезд. При постройке большого 200-дюймового телескопа в обсерватории Паломар использовалась следующая идея. Вообразите себе звезду, удаленную от нас на миллиарды километров; мы хотим собрать весь испускаемый ею свет в фокус. Конечно, мы не можем начертить всю траекторию лучей до звезды, тем не менее мы должны проверить, насколько времена на различных траекториях равны. Мы, конечно, знаем, что если множество различных лучей достигло плоскости , перпендикулярной направлению лучей, то времена для всех этих лучей будут равны (фиг. 25.12). Далее лучи должны отразиться от зеркала и за равные промежутки времени попасть в фокус . Это означает, что мы должны найти такую кривую, для которой сумма расстояний  будет постоянна, независимо от выбора точки . Легче всего это сделать, продолжив отрезок  до плоскости . Потребуем теперь, чтобы выполнялись соотношения  и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин  будет постоянной для всех точек кривой. Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой; вот зеркало телескопа и было изготовлено именно в форме параболы.

Фигура 26.10. Фокусирующая  оптическая система.

Фигура 26.11. Эллиптическое зеркало.

Приведенные примеры в общих чертах иллюстрируют принцип устройства оптических систем. Точные кривые можно рассчитать, используя правило равенства времен на всех путях, ведущих в точку фокуса, и требуя, чтобы время прохождения на всех соседних путях было большим.

В следующей главе мы еще вернемся к фокусирующим оптическим системам, а теперь обсудим дальнейшее развитие теории. Когда предлагается новый физический принцип, такой, как принцип наименьшего времени, то нашей первой естественной реакцией могли бы быть слова: «Все это очень хорошо, восхитительно, но вопрос заключается в том, улучшает ли это вообще наше понимание физики?)). На это можно ответить: «Да. Посмотрите сколько новых фактов мы теперь поняли!» А кто-то возразит: «Ну, в зеркалах я и так разбираюсь. Мне нужна такая кривая, чтобы каждая касательная к ней плоскость образовывала равные углы с двумя лучами света. Я могу рассчитать и линзу, потому что каждый падающий на нее луч отклоняется на угол, даваемый законом Снелла». Здесь очевидным образом содержание принципа наименьшего действия совпадает с законом равенства углов при отражении и пропорциональности синусов углов при преломлении. Тогда, может быть, это философский вопрос, а может быть, вопрос просто в том, какой путь красивее? Можно привести аргументы в пользу обеих точек зрения.

Однако критерий важности всякого принципа состоит в том, что он предсказывает нечто новое.

Легко показать, что принцип Ферма предсказывает ряд новых фактов. Прежде всего предположим, что имеются три среды — стекло, вода и воздух и мы наблюдаем явление преломления и измеряем показатель  для перехода из одной среды в другую. Обозначим через  показатель преломления для перехода из воздуха (1) в воду (2), а через  — для перехода из воздуха (1) в стекло (3). Измерив преломление в системе вода — стекло, найдем еще один показатель преломления и назовем его . Здесь заранее нет оснований считать, что  и  связаны между собой. Если же исходить из принципа наименьшего времени, то такую связь можно установить. Показатель  есть отношение двух величин — скорости света в воздухе к скорости света в воде; показатель  есть отношение скорости в воздухе к скорости в стекле, а  есть отношение скорости в воде к скорости в стекле. Поэтому, сокращая скорость света в воздухе, получаем

.                                                          (26.5)

Фигура 26.12. Параболическое зеркало.

Другими словами, мы предсказываем, что показатель преломления для перехода из одного материала в другой можно получить из показателей преломления каждого материала по отношению к некоторой среде, скажем воздуху или вакууму. Таким образом, измерив скорость света во всех средах, мы образуем одно число для каждой среды — показатель преломления для перехода из вакуума в среду — и называем его  (например,  для воздуха есть отношение скорости в воздухе к скорости в вакууме и т. д.), после чего легко написать нужную формулу. Показатель преломления для любых двух материалов  и  равен

.                                      (26.6)

Используя только закон Снелла, подобное соотношение предсказать невозможно. Но связь эта существует. Соотношение (26.5) известно давно и послужило сильным аргументом в пользу принципа наименьшего времени.

Еще одно предсказание принципа наименьшего времени состоит в том, что скорость света в воде при измерении должна оказаться меньше скорости света в воздухе. Это уже предсказание совсем другого рода. Оно гораздо глубже, потому что носит теоретический характер и никак не связано с наблюдениями, из которых Ферма вывел принцип наименьшего времени (до сих пор мы имели дело только с углами). Как оказалось, скорость света в воде действительно меньше скорости в воздухе, и ровно настолько, чтобы получился правильный показатель преломления.

 



<< ПредыдущаяОглавлениеСледующая >>