Глава 34. Релятивистские явления в излучении§ 1. Движущиеся источникиВ этой главе мы расскажем еще о ряде эффектов, связанных с излучением, и на этом закончим изложение классической теории света. Проведенный нами в предыдущих главах анализ световых явлений был достаточно полным и подробным. Однако мы не коснулись одного важного в приложениях процесса электромагнитного излучения — мы не исследовали поведения радиоволн в ящике с отражающими стенками размером порядка длины волны или радиоволн, пропускаемых через длинную трубу. Явления, возникающие в так называемых полых резонаторах и волноводах, мы обсудим позднее, причем прежде мы их проиллюстрируем на другом физическом примере — на примере звука. А в остальном изучение классической теории света заканчивается этой главой. Для всех эффектов, о которых здесь пойдет речь, характерно то, что они связаны с движением источника. Мы не будем больше предполагать, что смещение источника незначительно и его движение происходит с относительно малой скоростью возле фиксированной точки. Вспомним, что, согласно основным законам электродинамики, электрическое поле на больших расстояниях от движущегося заряда дается формулой
Определяющей величиной здесь является вторая производная единичного вектора Вместе с электрическим полем возникает магнитное поле, направленное всегда перпендикулярно электрическому и кажущемуся положению заряда. Оно дается формулой
Мы рассматривали до сих пор случай нерелятивистских скоростей, когда движением в направлении источника можно было пренебречь. Обратимся теперь к общему случаю произвольных скоростей и посмотрим, какие эффекты возникают в этих условиях. Итак, пусть движение происходит с любой скоростью, но расстояние от детектора до источника по-прежнему велико. В гл. 28 мы уже говорили, что в производную Фигура 34.1. Траектория движущегося заряда. Истинное положение в момент времени Таким образом, на достаточно больших расстояниях существенны только члены с производными
где Конечно, нужно всегда помнить, что координаты берутся не в момент наблюдения, а с учетом запаздывания. В данном случае запаздывание зависит и от и
Эти уравнения довольно сложны, но их решение легко получить геометрическим путем. Чертеж даст вам возможность качественно почувствовать, как возникают соотношения, хотя для вывода точных результатов понадобится преодолеть еще немало математических сложностей.
|