Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 3. Тепловая ионизация

Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть, то атомы могут оказаться ионизованными. Нам нужно знать, сколько существует ионов при тех или иных обстоятельствах, т. е. при заданной плотности атомов в единичном объеме и при определенной температуре. Снова придется представить себе ящик, в котором находится  атомов, содержащих в себе электроны. (Если электрон покидает атом, то атому присваивается наименование ион, а если атом нейтрален, то говорят просто - атом.) Таким образом, предположим, что в заданный момент в единичном объеме число нейтральных атомов равно , число ионов равно , а число электронов равно . Нужно определить, как связаны эти три числа между собой?

Прежде всего эти числа подчиняются двум условиям или связям. Например, можно как угодно менять различные условия, температуру и т. д., но сумма  всегда останется одной и той же, потому что это просто-напросто  - число атомных ядер в ящике. Если в единице объема число ядер сохраняется постоянным, а изменяется, скажем, температура, то, хотя в результате ионизации некоторые атомы превращаются в ионы, общее число атомов и ионов не изменяется. Значит, . Другое условие вытекает из того, что если газ в целом электрически нейтрален (и если мы пренебрегаем двойной или тройной ионизацией), то число ионов всегда равно числу электронов, или . Эти дополнительные условия просто выражают сохранение заряда и сохранение атомов.

Эти равенства верны, и мы в конце концов всегда используем их при решении реальных задач. Но нам нужно получить другое соотношение между этими величинами. Сделать это можно так. Обратимся снова к идее о том, что для отрыва электрона от атома требуется какое-то количество энергии, которую мы будем называть энергией ионизации и обозначать буквой  (чтобы новые формулы выглядели так же, как и раньше). Итак,  равна энергии, потребной для того, чтобы оторвать электрон от атома и получить ион. Мы снова убеждаемся, что число свободных электронов в единичном объеме «пара» равно произведению числа электронов в единичном объеме, связанных в атомах, на  в степени минус разность энергий связанного и свободного электронов, деленная на . Опять основное уравнение. Но как это записать? Число свободных электронов в единичном объеме, конечно, , потому что определение . Ну, а что можно сказать о числе связанных в атоме электронов в единичном объеме? Общее число мест, отданных электронам, равно , и мы предположим, что когда все электроны связаны, то каждому отводится некоторый объем . Таким образом, полный атомный объем, занимаемый связанными электронами, равен , и нашу формулу теперь можно записать в виде

.

Но формула эта неверна. Мы упустили из вида одно существенное обстоятельство: когда один электрон попал в атом, другой электрон уже не может проникнуть в этот же объем! Иначе говоря, не все объемы из числа возможных доступны электрону, который раздумывает, куда бы ему отправиться - в пар или в конденсированное состояние. Здесь возникают непредвиденные осложнения, в силу которых электрон не может подойти близко к тому месту, где уже находится другой электрон - они отталкиваются. По этой причине мы должны считать только ту часть объема, в которой электрон может разместиться. Ведь те объемы, которые уже заняты, нельзя причислять к числу возможных, и только те объемы, которые предоставлены ионам, можно рассматривать как места, вакантные для электронов. Тогда, учтя это обстоятельство, мы найдем, что более точная формула записывается в виде

.                   (42.7)

Эту формулу называют уравнением ионизации, или уравнением Саха. Теперь посмотрим, можем ли мы качественно понять, почему получается формула, подобная этой, если следить за кинетикой процесса.

Прежде всего время от времени, когда электрон сталкивается с ионом, они объединяются в атом. Точно так же время от времени атом испытывает столкновение и разваливается на ион и электрон. Скорости обоих процессов должны быть равны. А долго ли электрону и иону искать друг друга? Встречи, конечно, учащаются, если возрастает число электронов в единичном объеме. К этому же приводит и увеличение числа ионов в единичном объеме. Следовательно, полная скорость рекомбинации пропорциональна произведению числа электронов на число ионов. Далее, полная скорость ионизации в результате столкновений должна линейно зависеть от числа способных к ионизации атомов. Таким образом, скорости обоих процессов сбалансируются тогда, когда установится определенное соотношение между произведением  и числом атомов . Тот факт, что это соотношение выражается особой формулой, куда входит энергия ионизации , дает, конечно, несколько большую информацию, но мы можем легко сообразить, что такая формула обязательно должна содержать концентрации электронов, ионов и атомов в комбинации , которая приводит к постоянной, не зависящей больше от чисел , а только от температуры, атомных размеров и других постоянных.

Заметим также, что поскольку уравнение содержит числа в единичном объеме и если мы поставим два опыта с одним и тем же полным числом  атомов и ионов, т. е. со строго определенным числом ядер, но заключим их в ящики разных объемов, то числа  будут меньше для больших ящиков. Однако отношение  должно оставаться постоянным, поэтому полное число электронов и ионов должно быть больше в большем ящике. Чтобы убедиться в этом, предположим, что в ящик объема  помещено  ядер и их -я часть ионизована. Тогда  и . В этом случае наше уравнение принимает вид

.                 (42.8)

Иначе говоря, если мы берем все меньшую и меньшую плотность атомов или непрерывно увеличиваем объем ящика, относительное число электронов и ионов  должно возрасти. То, что ионизация может быть вызвана просто «расширением», при котором плотность уменьшается, объясняет нам, почему при очень малых плотностях (какие встречаются в холодном межзвездном пространстве) много ионов, хотя это трудно понять, учитывая имеющуюся в нашем распоряжении энергию. Энергия во много-много раз больше , но ионы все равно есть.

Почему же ионы могут существовать лишь при условии, что вокруг них имеется много места, тогда как при увеличении плотности они стремятся исчезнуть? Ответ: Все дело в атомах. Время от времени свет или другой атом, или ион, или еще что-то, что поддерживает тепловое равновесие, разрушает атомы. Очень редко, потому что для этого требуются огромные количества избыточной энергии, электрон отрывается и происходит превращение атома в ион. Если пространства огромны, то электрон слоняется очень долго, быть может много лет и ничего не встречает. Но однажды он находит ион, и тогда они объединяются в атом. Скорость, с которой электроны покидают атомы, очень мала. Но если объем огромен, то сбежавший электрон так долго ищет ион, с которым он мог бы рекомбинировать, что вероятность рекомбинации совсем ничтожна; поэтому, несмотря на то, что для ионизации нужны большие излишки энергии, число электронов может быть вполне ощутимым.

 



<< Предыдущая Оглавление Следующая >>