Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 3. Испарение жидкости

В менее элементарной статистической механике пытаются решить следующую важную задачу. Предположим, что имеется совокупность притягивающихся друг к другу молекул и сила между любыми двумя молекулами, скажем -й и -й, зависит только от расстояния между ними , и может быть представлена в виде производной от потенциальной энергии . На фиг. 40.3 показан возможный вид такой функции. Если , то при сближении молекул энергия уменьшается, поэтому молекулы притягиваются; если же молекулы сближаются еще теснее, энергия очень резко возрастает, значит, на малых расстояниях молекулы сильно отталкиваются. Таково в общих чертах поведение молекул.

30.gif

Фиг. 40.3. Кривая потенциальной энергии для двух молекул.

Потенциальная энергия зависит только от расстояния.

Предположим теперь, что мы заполнили этими молекулами какой-то ящик и хотим знать, как они там уместятся в среднем. На это даст ответ выражение . В этом случае полная потенциальная энергия, если предположить, что молекулы взаимодействуют только попарно, равна сумме всех парных энергий (в более сложных случаях могут встретиться и тройные силы, но электрические силы, например, парные). Поэтому вероятность того, что молекулы образуют конфигурацию, характеризуемую заданными комбинациями расстояний пропорциональна

.

Если температура очень высока, так что , то экспонента почти всюду мала, и вероятность найти молекулу в том или ином месте почти не зависит от расстояния до других молекул. Рассмотрим случай двух молекул; в этом случае  будет вероятностью найти молекулы на расстоянии  друг от друга. Ясно, что вероятность максимальна тогда, когда потенциал наиболее отрицателен, а когда потенциал стремится к бесконечности, вероятность почти равна нулю (это происходит на очень малых расстояниях). Это означает, что у атомов газа нет шансов столкнуться друг с другом, уж очень сильно они отталкиваются. Но очень велики шансы найти эти молекулы (если отнести вероятность к единичному объему) вблизи точки . Здесь вероятность больше, чем в других точках, но насколько больше - это зависит от температуры. Если температура очень велика по сравнению с разностью энергий в точках  и , то экспонента всегда почти равна единице. Это случай, когда средняя кинетическая энергия (она порядка ) значительно превосходит потенциальную энергию. Силы тогда мало что значат. Но с падением температуры вероятность найти молекулы на расстоянии, близком к , резко возрастает по сравнению с вероятностью найти молекулы в любом другом месте; и в самом деле, если  много меньше , то около  экспонента имеет довольно большой положительный показатель. Другими словами, при заданном объеме молекулы предпочитают быть на расстоянии минимальной энергии, а не очень далеко друг от друга. По мере падения температуры атомы сближаются, сбиваются в кучу, объединяются в жидкости, в твердые тела и молекулы, а если их подогреть, то они испаряются.

Если бывает необходимо точно описать, как происходит испарение, или вообще уточнить, как молекулы ведут себя в данных обстоятельствах, то поступать следует так. Прежде всего нужно как можно точнее узнать закон взаимодействия молекул . Как это сделать - безразлично: можно вычислить потенциал с помощью квантовой механики или установить закон взаимодействия экспериментально. Но если даже закон взаимодействия молекул известен, нужно все же учесть, что дело идет о миллионах молекул и нам еще придется хватить горя при изучении функции . Все же удивительно, что функция так проста и все как будто ясно, поскольку известен точный потенциал взаимодействия, а дело это оказывается невероятно сложным: трудность заключается в ужасающе большом числе переменных.

Но вопрос захватывающе интересен. Это один из примеров того, что называют «задачей многих тел», и он содержит много поистине увлекательных вещей. Одна-единственная формула, которую мы получим, решив задачу, должна содержать все детали, например переход газа в твердое состояние или возможные кристаллические строения твердого тела. Многие пытались ее сосчитать, но математические трудности уж очень велики, и дело не в трудности вывода общего закона, а просто в том, чтобы справиться с огромным числом переменных.

Вот и все, что касается распределения частиц в пространстве. На этом, собственно, и кончается классическая статистическая механика, ибо если нам известны силы, то в принципе мы можем найти пространственное распределение, а распределение скоростей находится сразу на все случаи жизни, оно не будет меняться от случая к случаю. Основная задача состоит в получении более конкретной информации из нашего формального решения: это и является основным занятием классической статистической механики.

 



<< Предыдущая Оглавление Следующая >>