Читать в оригинале

<< Предыдущая Оглавление Следующая >>


§ 5. Поля и силы в присутствии диэлектриков

Мы докажем сейчас ряд довольно общих теорем электростатики для тех случаев, когда имеются диэлектрики. Мы уже видели, что емкость плоского конденсатора при заполнении его диэлектриком увеличивается в определенное число раз. Сейчас можно показать, что это верно для емкости любой формы, если вся область вокруг двух проводников заполнена однородным линейным диэлектриком. В отсутствие диэлектрика уравнения, которые требуется решить, такие:

.

Когда имеется диэлектрик, первое из этих уравнений изменяется,  и мы получаем

.                                 (10.26)

Далее, поскольку мы считаем  всюду одинаковой, последние два уравнения можно записать в виде

.                             (10.27)

Следовательно, для  получаются такие же уравнения, как для , и тогда они имеют решение . Другими словами, поле всюду в  раз меньше, чем в отсутствие диэлектрика. Поскольку разность потенциалов есть линейный интеграл от поля, она уменьшится во столько же раз. А так как заряд на электродах конденсатора в обоих случаях тот же самый, то уравнение (10.2) говорит, что емкость в присутствии всюду однородного диэлектрика увеличивается в  раз.

Зададимся теперь вопросом, как взаимодействуют два заряженных проводника в диэлектрике. Рассмотрим жидкий диэлектрик, повсюду однородный. Мы уже видели раньше, что один из способов найти силу — это продифференцировать энергию по соответствующему расстоянию. Если заряды на проводниках равны и противоположны по знаку, то энергия , где  — их емкость. С помощью принципа виртуальной работы любая компонента силы получается некоторым дифференцированием; например,

.                 (10.28)

Поскольку диэлектрик увеличивает емкость в  раз, все силы уменьшатся в такое же число раз.

Однако все это не так просто. Сказанное справедливо, только если диэлектрик жидкий. Любое перемещение проводников, окруженных твердым диэлектриком, изменяет условия механических напряжений в диэлектрике и его электрические свойства, а также несколько меняет механическую энергию диэлектрика. Движение проводников в жидкости не меняет свойств жидкости. Жидкость перетекает в другое место, но ее электрические свойства остаются неизменными.

Во многих старых книгах по электричеству изложение начинается с «основного» закона, по которому сила, действующая между двумя зарядами, есть

.

а эта точка зрения абсолютно неприемлема. Во-первых, это не всегда верно; это справедливо только в мире, заполненном жидкостью; во-вторых, так получается лишь для постоянного значения , что для большинства реальных материалов выполняется приближенно.

Гораздо легче начинать со всегда справедливого (для неподвижных зарядов) закона Кулона для зарядов в вакууме.

Что же происходит с зарядами в твердом теле? На это трудно ответить, потому что даже не вполне ясно, о чем идет речь. Если вы вносите заряды внутрь твердого диэлектрика, то возникают всякого рода давления и напряжения. Вы не можете считать работу виртуальной, не включив сюда также механическую энергию, необходимую для сжатия тела, а отличить однозначным образом электрические силы от механических, возникающих за счет самого материала, вообще говоря, очень трудно. К счастью, никому на самом деле не бывает нужно знать ответ на предложенный вопрос. Иногда нужно знать величину натяжений, которые могут возникнуть в твердом теле, а это можно вычислить. Но результаты здесь оказываются гораздо сложнее, чем простой ответ, полученный нами для жидкостей.

Неожиданно сложной оказывается следующая проблема в теории диэлектриков: почему заряженное тело подбирает маленькие кусочки диэлектрика? Если вы в сухой день причесываетесь, то ваша расческа потом легко будет подбирать маленькие кусочки бумаги. Если вы не вдумались в этот вопрос, то, вероятно, сочтете, что на расческе заряды одного знака, а на бумаге противоположного. Но бумага ведь была сначала электрически нейтральной. У нее нет суммарного заряда, а она все же притягивается. Правда, иногда бумажки подскакивают к расческе, а затем отлетают, сразу же отталкиваясь от нее. Причина, конечно, заключается в том, что, коснувшись расчески, бумага сняла с нее немного отрицательных зарядов, а одноименные заряды отталкиваются. Но это все еще не дает ответа на первоначальный вопрос. Прежде всего, почему бумажки вообще притягиваются к расческе?

Ответ заключается в поляризации диэлектрика, помещенного в электрическое поле. Возникают поляризационные заряды обоих знаков, притягиваемые и отталкиваемые расческой. Однако в результате получается притяжение, потому что поле поблизости от расчески сильнее, чем вдали от нее, ведь расческа не бесконечна. Ее заряд локализован. Нейтральный кусочек бумаги не притянется ни к одной из параллельных пластин конденсатора. Изменение поля составляет существенную часть механизма притяжения.

Как показано на фиг. 10.8, диэлектрик всегда стремится из области слабого поля в область, где поле сильнее. В действительности можно показать, что сила, действующая на малые объекты, пропорциональна градиенту квадрата электрического поля. Почему она зависит от квадрата поля? Потому что индуцированные поляризационные заряды пропорциональны полям, а для данных зарядов силы пропорциональны полю. Однако, как мы уже указывали, результирующая, сила возникает, только если квадрат поля меняется от точки к точке. Следовательно, сила пропорциональна градиенту квадрата поля. Константа пропорциональности включает помимо всего прочего еще диэлектрическую проницаемость данного тела и зависит также от размеров и формы тела.

Фигура 10.8. На диэлектрик в неоднородном поле действует сила, направленная в сторону областей с большей напряженностью поля.

Фигура 10.9. Сила, действующая на диэлектрик в плоском конденсаторе, может быть вычислена с помощью закона сохранения энергии.

Есть еще одна близкая задача, в которой сила, действующая на диэлектрик, может быть найдена точно. Если мы возьмем плоский конденсатор, в котором плитка диэлектрика задвинута лишь частично (фиг. 10.9), то возникнет сила, вдвигающая диэлектрик внутрь. Провести детальное исследование силы очень трудно; оно связано с неоднородностями поля вблизи концов диэлектрика и пластин. Однако если мы не интересуемся деталями, а просто используем закон сохранения энергии, то силу легко вычислить. Мы можем определить силу с помощью ранее выведенной формулы. Уравнение (10.28) эквивалентно такому:

                                     (10.30)

Нам осталось только найти, как меняется емкость в зависимости от положения плитки диэлектрика.

Пусть полная длина пластин есть , ширина их равна , расстояние между пластинами и толщина диэлектрика равна , а расстояние, на которое вдвинут диэлектрик, есть . Емкость есть отношение полного свободного заряда на пластинах к разности потенциалов между пластинами. Выше мы видели, что яри данном потенциале  поверхностная плотность свободных зарядов равна . Следовательно, полный заряд пластин равен

,

откуда мы находим емкость

.

С помощью (10.30) получаем

.                                       (10.32)

Но пользы от этого выражения не очень много, разве только вам понадобится определить силу именно в таких условиях. Мы хотели лишь показать, что можно подчас избежать страшных осложнений при определении сил, действующих на диэлектрики, если пользоваться энергией, как это было в настоящем  случае.

В нашем изложении теории диэлектриков мы имели дело только с электрическими явлениями, принимая как факт, что поляризация вещества пропорциональна электрическому полю. Почему возникает такая пропорциональность — вопрос, представляющий, пожалуй, еще больший интерес для физики. Стоит нам понять механизм возникновения диэлектрической проницаемости с атомной точки зрения, как мы сможем использовать измерения диэлектрической проницаемости в изменяющихся условиях для получения подробных сведений о строении атомов и молекул. Эти вопросы будут частично изложены в следующей главе.

 



<< Предыдущая Оглавление Следующая >>