Читать в оригинале

<< ПредыдущаяОглавлениеСледующая >>


§ 5. Охлаждение адиабатическим размагничиванием

Парамагнетизм имеет одно весьма интересное применение. При очень низкой температуре и в сильном магнитном поле атомные магнитики выстраиваются. При этом с помощью процесса, называемого адиабатическим размагничиванием, можно получить самые низкие температуры. Возьмем какую-то парамагнитную соль, содержащую некоторое число редкоземельных атомов (например, аммиачный нитрат празеодима), и начнем охлаждать ее жидким гелием до 1-2° К в сильном магнитном поле. Тогда показатель  будет больше единицы, скажем 2 или 3. Большинство спинов направлено вверх, и намагниченность почти достигает насыщения. Для облегчения давайте считать, что поле настолько велико, а температура так низка, что все атомы смотрят в одном направлении. Теплоизолируйте затем соль (удалив, например, жидкий гелий и создав вакуум) и выключите магнитное поле. При этом температура соли падает.

Если бы это поле вы выключили внезапно, то раскачивание и сотрясение атомов кристаллической решетки постепенно перепутало бы все спины. Некоторые из них остались бы направленными вверх, а другие повернулись бы вниз. Если никакого поля нет (и если не учитывать взаимодействия между атомными магнитами, которое привносит только небольшую ошибку), то на переворачивание магнитиков энергии не потребуется. Поэтому случайное распределение спинов установится без какого-либо изменения температуры.

Предположим, однако, что в то время как спины переворачиваются, магнитное поле еще не вполне исчезло. Тогда для переворачивания спинов против поля требуется некоторая работа, она должна затрачиваться на преодоление поля. Этот процесс отбирает энергию у теплового движения и понижает температуру. Таким образом, если сильное магнитное поле выключается не слишком быстро, температура соли будет уменьшаться. Размагничиваясь, она охлаждается. С точки зрения квантовой механики, когда поле сильно, все атомы находятся в наинизшем состоянии, так как слишком много шансов против того, чтобы они находились в высшем состоянии. Но как только напряженность поля понижается, тепловые флуктуации со все большей и большей вероятностью будут «выталкивать» атомы на высшее состояние, и когда это происходит, атом поглощает энергию . Таким образом, если магнитное поле выключается медленно, магнитные переходы могут отбирать энергию у тепловых колебаний кристалла, тем самым охлаждая его. Таким способом можно понизить температуру от нескольких градусов до температуры в несколько тысячных долей градуса от абсолютного нуля.

А если нам захочется охладить что-то еще сильнее? Оказывается, что здесь природа тоже была очень предусмотрительной. Я уже упоминал, что магнитные моменты есть и у атомных ядер. Наши формулы для парамагнетизма работают и в случае ядер, только надо иметь в виду, что моменты ядер приблизительно в тысячу раз меньше. (По порядку величины они равны , где  - масса протона, так что они меньше в число раз, равное отношению масс протона и электрона.) Для таких магнитных моментов даже при температуре 2° К показатель  составляет всего несколько тысячных. Но если мы используем парамагнитное размагничивание и достигнем температуры нескольких тысячных градуса, то  становится порядка единицы; при столь низких температурах мы уже можем говорить о насыщении ядерного магнетизма. Это очень кстати, ибо теперь, воспользовавшись адиабатическим размагничиванием системы магнитных ядер, можно достичь еще более низких температур. Таким образом, в магнитном охлаждении возможны две стадии. Сначала мы используем диамагнитное размагничивание парамагнитных ионов и спускаемся до нескольких тысячных долей градуса. Затем мы применяем холодную парамагнитную соль для охлаждения некоторых материалов, обладающих сильным ядерным магнетизмом. И, наконец, когда мы выключаем магнитное поле, температура материалов доходит до миллионных долей градуса от абсолютного нуля, если, конечно, все было проделано достаточно тщательно.

 



<< ПредыдущаяОглавлениеСледующая >>