Глава 11. РАСПРОСТРАНЕНИЕ В КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ§ 1. Состояния электрона в одномерной решеткеНа первый взгляд вам может показаться, что обладающий небольшой энергией электрон с превеликим трудом протискивается через твердый кристалл. Атомы в нем уложены так, что их центры отстоят один от другого лишь на несколько ангстрем, а эффективный диаметр атома при рассеянии электронов составляет примерно или около этого. Иначе говоря, атомы, если их сравнивать с промежутками между ними, очень велики, так что можно ожидать, что средний свободный пробег между столкновениями будет порядка нескольких ангстрем, а это практически равно нулю. Следует ожидать, что электрон почти тотчас же влетит в тот или иной атом. Тем не менее перед нами самое обычное явление природы: когда решетка идеальна, электрону ничего не стоит плавно пронестись сквозь кристалл, почти как сквозь вакуум. Странный этот факт - причина того, что металлы так легко проводят электричество; кроме того, он позволил изобрести множество весьма полезных устройств. Например, благодаря ему транзистор способен имитировать радиолампу. В радиолампе электроны движутся свободно через вакуум, в транзисторе они тоже движутся свободно, но только через кристаллическую решетку. Механизм того, что происходит в транзисторе, будет описан в этой главе; следующая глава посвящена применениям этих принципов в различных практических устройствах. Проводимость электронов в кристалле - один из примеров очень общего явления. Через кристаллы могут странствовать не только электроны, но и другие «объекты». Так, атомные возбуждения тоже могут путешествовать аналогичным способом. Явление, о котором мы сейчас будем говорить, то и дело возникает при изучении физики твердого состояния. Мы уже неоднократно разбирали примеры систем с двумя состояниями. Представим себе на этот раз электрон, который может находиться в одном из двух положений, причем в каждом из них он оказывается в одинаковом окружении. Предположим также, что имеется определенная амплитуда перехода электрона из одного положения в другое и, естественно, такая же амплитуда перехода обратно, в точности, как в гл. 8, § 1 (вып. 8) для молекулярного иона водорода. Тогда законы квантовой механики приводят к следующим результатам. У электрона возникнет два возможных состояния с определенной энергией, причем каждое состояние может быть описано амплитудой того, что электрон пребывает в одном из двух базисных положений. В каждом из состояний определенной энергии величины этих двух амплитуд постоянны во времени, а фазы меняются во времени с одинаковой частотой. С другой стороны, если электрон сперва был в одном положении, то со временем он перейдет в другое, а еще позже вернется в первое положение. Изменения амплитуды похожи на движение двух связанных маятников. Рассмотрим теперь идеальную кристаллическую решетку и вообразим, что в ней электрон может расположиться в некоторой «ямке» возле определенного атома, имея определенную энергию. Допустим также, что у электрона имеется некоторая амплитуда того, что он перескочит в другую ямку, которая находится неподалеку, возле другого атома. Это чем-то напоминает систему с двумя состояниями, но с добавочными осложнениями. После того как электрон достигает соседнего атома, он может перейти в совершенно новое место или вернуться в исходную позицию. Все это похоже не столько на пару связанных маятников, сколько на бесконечное множество маятников, связанных между собой. Это чем-то напоминает одну из тех машин (составленных из длинного ряда стержней, прикрепленных к закрученной проволоке), с помощью которых на первом курсе демонстрировалось распространение волн. Если у вас имеется гармонический осциллятор, связанный с другим гармоническим осциллятором, который в свою очередь связан со следующим осциллятором, который и т.д..., и если вы создадите в одном месте какую-то нерегулярность, то она начнет распространяться, как волна по проволоке. То же самое возникает и в том случае, если вы поместите электрон возле одного из атомов в длинной их цепочке. Как правило, задачи по механике легче всего решать на языке установившихся волн; это проще, чем анализировать последствия отдельного толчка. Тогда появляется какая-то картина смещений, которая распространяется по кристаллу, как волна с заданной, фиксированной частотой. То же самое происходит с электроном, и по той же причине, потому что электрон описывается в квантовой механике похожими уравнениями. Но нужно помнить одну вещь: амплитуда для электрона быть в данном месте это амплитуда, а не вероятность. Если бы электрон просто просачивался из одного места в другое, как вода через дырочку, то его поведение было бы совсем иным. Если бы, скажем, мы соединили два бачка с водой тоненькой трубочкой, по которой вода из одного бачка по капле перетекала в другой, то уровни воды выравнивались бы по экспоненте. С электроном же происходит просачивание амплитуды, а не монотонное переливание вероятностей. А одно из свойств мнимого члена (множителя в дифференциальных уравнениях квантовой механики) - что он меняет экспоненциальное решение на колебательное. И то, что после этого происходит, ничуть не походит на то, как вода перетекает из одного бачка в другой. Теперь мы хотим квантовомеханический случай проанализировать количественно. Пусть имеется одномерная система, состоящая из длинной цепи атомов (фиг. 11.1,а). (Кристалл, конечно, трехмерен, но физика в обоих случаях очень близка; если вы разберетесь в одномерном случае, то сможете разобраться и в том, что бывает в трех измерениях.) Мы хотим знать, что случится, если в эту линию атомов поместить отдельный электрон. Конечно, в реальном кристалле таких электронов мириады. Но большинство их (в непроводящем кристалле почти все) занимает в общей картине движения свое место, каждый вертится вокруг своего атома, и все оказывается совершенно установившимся. А мы хотим рассуждать о том, что будет, если внутрь поместить лишний электрон. Мы не будем думать о том, что делают прочие электроны, потому что будем считать, что на то, чтобы изменить их энергию, потребуется очень много энергии возбуждения. Мы собираемся добавить электрон и создать как бы новый слабо связанный отрицательный ион. Следя за тем, что поделывает этот лишний электрон, мы делаем приближение, пренебрегая при этом внутренним механизмом атомов. Фиг. 11.1. Базисные состояния электрона в одномерной решетке. Ясно, что этот электрон сможет перейти к другому атому, перенося в новое место отрицательный ион. Мы предположим, что (в точности, как и в случае электрона, «прыгавшего» от протона к протону) электрон может с какой-то амплитудой «прыгать» от атома к его соседям с любой стороны. Как же описывать такую систему? Что считать разумными базисными состояниями? Если вы вспомните, что мы делали, когда у электрона было только две возможные позиции, вы сможете догадаться. Пусть в нашей цепочке все расстояния между атомами одинаковы, и пусть мы их пронумеруем по порядку, как на фиг. 11.1,а. Одно базисное состояние - когда электрон находится возле атома №6; другое базисное состояние - когда электрон находится возле №7, или возле №8, и т. д.; -е базисное состояние можно описать, сказав, что электрон находится возле атома №. Обозначим это базисное состояние . Из фиг. 11.1 ясно, что подразумевается под тремя базисными состояниями: , и . С помощью этих наших базисных состояний можно описать любое состояние нашего одномерного кристалла, задав все амплитуды того, что состояние находится в одном из базисных состояний, т. е. амплитуду того, что электрон расположен близ данного частного атома. Тогда состояние можно записать в виде суперпозиции базисных состояний: . (11.1) Кроме того, мы хотим еще предположить, что когда электрон находится близ одного из атомов, то имеется некоторая амплитуда того, что он просочится к тому атому, что слева, или к тому, что справа. Возьмем простейший случай, когда считается, что он может просочиться только к ближайшим соседям, а к следующему соседу он сможет дойти в два приема. Примем, что амплитуды того, что электрон перепрыгнет от одного атома к соседнему, равны (за единицу времени). Изменим на время обозначения, и амплитуду , связанную с -м атомом, обозначим через . Тогда (11.1) будет иметь вид . (11.2) Если бы вы знали каждую из амплитуд в данный момент, то, взяв квадраты их модулей, можно было бы получить вероятность того, что вы увидите электрон, взглянув в этот момент на атом . Но что сталось бы чуть позже? По аналогии с изученными нами системами с двумя состояниями мы предлагаем составить гамильтоновы уравнения для этой системы в виде уравнений такого типа: . (11.3) Первый справа коэффициент физически означает энергию, которую имел бы электрон, если бы он не мог просачиваться от одного атома к другим. (Совершенно неважно, что мы назовем ; мы неоднократно видели, что реально это не означает ничего, кроме выбора нуля энергии.) Следующий член представляет амплитуду в единицу времени того, что электрон из -й ямки просочится в -ю ямку, а последний член означает амплитуду просачивания из -й ямки. Как обычно, считается постоянным (не зависящим от ). Для полного описания поведения любого состояния надо для каждой из амплитуд иметь по одному уравнению типа (11.3). Поскольку мы намерены рассмотреть кристалл с очень большим количеством атомов, то допустим, что состояний имеется бесконечно много, атомы тянутся без конца в обе стороны. (При конечном числе атомов придется специально обращать внимание на то, что случается на концах.) А если количество наших базисных состояний бесконечно велико, то и вся система наших гамильтоновых уравнений бесконечна! Мы напишем только часть ее: (11.4)
|