1.1. Управляемые системыПонятие системы Системой называется совокупность целенаправленно взаимодействующих объектов любой природы. Примерами систем могут служить весь окружающий нас мир или любая его часть, человеческое общество, отрасль народного хозяйства, завод, летательный аппарат, вычислительная машина, организм человека или животного и т. д. Чтобы применить математические методы для изучения функционирования какой-либо системы, необходимо построить ее математическую модель. Для этого нужно определить совокупность величин, которые могут служить количественными характеристиками функционирования системы. Затем следует установить соотношения между этими величинами, приближенно описывающие функционирование реальной системы. Всякая система взаимодействует с окружающей средой, что-то получает извне и после переработки что-то отдает в окружающую среду. В этом заключается работа системы. Летательный аппарат получает на входе (от летчика или автономной системы управления) управляющие воздействия – положение его органов управления (рулей и дросселей двигательной установки) как функции времени. Вследствие этого изменяется ориентация осей летательного аппарата и направление его движения. В результате работы такой системы получается определенная траектория полета. Заметим, что эта траектория определяется и массой других внешних факторов, связанных, например, с метеоусловиями полета. Первым шагом к построению математической модели системы является математическое описание того, что система получает на входе и выдает на выходе. Величины, определяющие внешние воздействия на систему, называются ее входными сигналами. Величины, определяющие действие системы на окружающую среду, называются выходными сигналами системы. Кроме входных и выходных сигналов, для построения математической модели вводятся вспомогательные величины, характеризующие внутреннее состояние системы в каждый момент времени. Такие величины называются переменными состояния системы. Множество всех возможных входных сигналов системы будем называть ее пространством входных сигналов. Множество всех выходных сигналов – пространством выходных сигналов. Множество всех возможных состояний системы будем называть ее пространством состояний.
Математическая модель системы
После определения входных и выходных сигналов и переменных состояний системы для получения ее математической модели нужно установить соотношения между этими величинами. Эти соотношения могут быть относительно простыми или весьма сложными, носить детерминированный или вероятностный характер. Математической моделью системы называется совокупность четырех элементов: 1) пространство состояний; 2) пространство входных сигналов; 3) пространство выходных сигналов; 4) соотношения, связывающие входные и выходные сигналы и переменные состояния.
Пример. Движение материальной точки массой m описывается с помощью второго закона Ньютона:
Входным сигналом служит сила Таким образом, вектором состояния служит шестимерный вектор
Управляемые системы
Предположим, что нам точно известна математическая модель некоторой системы, которую представим в виде рис. 1. Это означает, что при любом заданном входном сигнале
Рис. 1. Рис. 2. В том случае, когда внешнее воздействие
Рис. 3. Рис. 4. В этом случае мы должны сами выбрать величину и направление силы Итак, если имеется возможность управления системой, т. е. формирования входных сигналов Полное математическое описание управляемой системы состоит из математической модели объекта управления, сформированной цели управления и показателя качества, позволяющего сравнивать между собой различные способы достижения цели.
Показатели качества управления
Рассмотрим некоторые показатели или критерии качества управления. Предположим, что некоторый объект управления необходимо перевести из исходного состояния В других задачах величина Очень часто требуется обеспечить равенство выходного сигнала системы Объект управления вместе с устройством управления образуют систему управления. На рис. 5 представлена замкнутая система управления. В таких системах выходной сигнал Рис. 5 В качестве примера следящей системы рассмотрим автоматическое управление углом поворота вала, который может быть связан, например, с направленной антенной для приема спутниковых сигналов, рулевым механизмом летательного аппарата или валом прокатного стана. Следящий вал приводится во вращение электродвигателем (ДВ) постоянного тока (рис. 6). Рис. 6. Напряжение Назначение такой системы заключается в обеспечении минимума рассогласования Рис.7 Для того, чтобы дать математическое описание системы, необходимо установить связь между углом
Таким образом, электродвигатель рассмотренной системы может быть приближенно заменен интегрирующим звеном.
|